Ibix said:
I don't normally comment on language, but in both post #19 and #23 you've used "clicks" in a way I didn't follow. Did you mean clocks rather than clicks? I'm going to assume you do in what follows.
What a person's individual clock shows has absolutely no bearing on how far apart in spacetime two events are, which is a lesson from the twin paradox. It's perfectly possible for two clocks showing the same time to cross the event horizon together, separate and return so that they show different times just like in the twin paradox, and then collide with the singularity at the same event. There's no separation between the clocks any more than there is separation between two cars that leave the factory together but follow different routes to a garage - their odometers show different readings, but so what? Their odometer readings don't show the distance between them, just the length of the route they have taken. Likewise their clocks show the proper time along the route they have taken, not the time separation between them.
There are different geodesics that reach the singularity at the same event and ones that reach it at different events. They can have many different "lengths" from the horizon, and which is longer depends on the path taken. The "longest" available route is, as I recall, is the geodesic that corresponds to free-fall from infinity, so if you find yourself on the inside of a black hole you maximise your remaining proper time by matching speeds with an object passing you that fell from infinity.
Sorry for the clicks and clicks. I indeed meant clocks. I only now see the possibility to edit. I noticed it too. It's, I think a typo because my mobile typing. Small keys, big thumb!
Anyhow, imagine two geodesics, corresponding to two particles that start from the same position at infinity. Somewhere along their way we hold one of them and let it hover somewhere before reaching the EH. The particle falling along freely ends up at the singularity before the one we stopped.
Say the stop lasts one million years. After a million years it continues its downfall. Can't we say then that when it hits the singularity it's separated one million years in time from the other particle?
Suppose you and I are the particles. I fall into the singularity where my life stops. You, in the other hand, live along a million years (according to your clock). So when you fall in I will be about a million years older than you. Are we not separated then by a million years in time?
In fact, ALL particles that constitute the hole, from its beginning, will have ages that can differ as much as the particles spent their time outside the hole. All inside particles show different end-times. I.e. they end up at different times. Is this the same as today and tomorrow being separated by time? We can reach tomorrow simply by sitting still.
What happens with the hole? Your time, outside the hole, has run a million years longer than mine, inside the hole. So when you enter the hole you are obviously older than me. We are indeed separated in time in the same way that a traveler (accelerating away from you and returning to you) in the twin paradox is younger than you (remaining at rest, in an jnertial frame). But in the black hole case it's the particle without a proper acceleration that is younger after the voyage.
In the freely falling frame, you end up at a time that is different from mine. The difference can be any time, depending on the non-geodesic nature of the particles that constitute the hole. I agree that they are not separated in time like today and tomorrow are separated. But yet, they end up at different times. But they can't continue...