Special cases for sine and cosine sum

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Cosine Sine Sum
Click For Summary
SUMMARY

The discussion focuses on the special cases of the sine and cosine summation formulas for \(n = 0, 1, 2\). For \(n = 0\), the results are \(\sum\limits_{k = 0}^0\cos k\theta = 1\) and \(\sum\limits_{k = 0}^0\sin k\theta = 0\). For \(n = 1\), the summations yield \(\sum\limits_{k = 0}^1\cos k\theta = \sin\theta\cot\frac{\theta}{2}\) and \(\sum\limits_{k = 0}^1\sin k\theta = \sin\theta\). For \(n = 2\), the results are \(\sum\limits_{k = 0}^2\cos k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{\theta}{2}}\cos\theta\) and \(\sum\limits_{k = 0}^2\sin k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{\theta}{2}}\sin\theta\).

PREREQUISITES
  • Understanding of trigonometric functions (sine and cosine)
  • Familiarity with summation notation
  • Knowledge of the sine addition formulas
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the derivation of the sine and cosine summation formulas
  • Explore the applications of sine and cosine summations in Fourier series
  • Learn about the implications of these formulas in signal processing
  • Investigate the relationship between trigonometric identities and summation formulas
USEFUL FOR

Mathematicians, physics students, and anyone interested in trigonometric identities and their applications in various fields such as engineering and computer science.

Dustinsfl
Messages
2,217
Reaction score
5
State the special cases of the above two formulas for $n = 0, 1,$ and $2$.
These should be familiar formulas.

I don't see what is so special and familiar about when n = 2 or for cosine n = 1.When $n = 0$, we have
$$
\sum\limits_{k = 0}^0\cos k\theta = \frac{\sin\left(\frac{\theta}{2}\right)}{\sin\frac{\theta}{2}} = 1
$$
and
$$
\sum\limits_{k = 0}^0\sin k\theta = \frac{\sin\left(\frac{ \theta}{2}\right)}{\sin\frac{ \theta}{2}}\times 0 = 0.
$$
When $n = 1$, we have
$$
\sum\limits_{k = 0}^1\cos k\theta = \frac{\sin\theta}{\sin\frac{ \theta}{2}}\cos\frac{\theta}{2} = \sin\theta\cot\frac{\theta}{2}
$$
and
$$
\sum\limits_{k = 0}^1\sin k\theta = \frac{\sin\theta}{\sin\frac{\theta}{2}}\sin\frac{ \theta}{2} = \sin\theta.
$$
When $n = 2$, we have
$$
\sum\limits_{k = 0}^2\cos k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\cos\theta
$$
and
$$
\sum\limits_{k = 0}^2\sin k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\sin\theta.
$$
 
Physics news on Phys.org
dwsmith said:
State the special cases of the above two formulas for $n = 0, 1,$ and $2$.
These should be familiar formulas.

I don't see what is so special and familiar about when n = 2 or for cosine n = 1.When $n = 0$, we have
$$
\sum\limits_{k = 0}^0\cos k\theta = \frac{\sin\left(\frac{\theta}{2}\right)}{\sin\frac{\theta}{2}} = 1
$$
and
$$
\sum\limits_{k = 0}^0\sin k\theta = \frac{\sin\left(\frac{ \theta}{2}\right)}{\sin\frac{ \theta}{2}}\times 0 = 0.
$$
When $n = 1$, we have
$$
\sum\limits_{k = 0}^1\cos k\theta = \frac{\sin\theta}{\sin\frac{ \theta}{2}}\cos\frac{\theta}{2} = \sin\theta\cot\frac{\theta}{2}
$$
and
$$
\sum\limits_{k = 0}^1\sin k\theta = \frac{\sin\theta}{\sin\frac{\theta}{2}}\sin\frac{ \theta}{2} = \sin\theta.
$$
When $n = 2$, we have
$$
\sum\limits_{k = 0}^2\cos k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\cos\theta
$$
and
$$
\sum\limits_{k = 0}^2\sin k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\sin\theta.
$$

Hi dwsmith, :)

I don't understand what you meant by the "above two formulas". Is there anything missing here? :)

Kind Regards,
Sudharaka.
 
It was the formulas for cosine and sine.

$\sum\limits_{k = 0}^n\sin k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\sin\frac{n}{2}\theta$

and

$\sum\limits_{k = 0}^n\cos k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta$
 
dwsmith said:
It was the formulas for cosine and sine.

$\sum\limits_{k = 0}^n\sin k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\sin\frac{n}{2}\theta$

and

$\sum\limits_{k = 0}^n\cos k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta$

For \(n=1\) in the cosine summation you can express the result using only a cosine function as,

\[\sum\limits_{k = 0}^1\cos k\theta = \frac{\sin\theta}{\sin\frac{ \theta}{2}}\cos\frac{\theta}{2} = 2\cos^{2}\frac{\theta}{2}\]

Similarly for \(n=2\) in the sine summation,

\[\sum\limits_{k = 0}^2\sin k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\sin\theta=2\sin\left(\frac{3}{2}\theta\right)\cos \frac{ \theta}{2}\]

Apart from these minor simplifications, I don't see anything further that could be done to the results that you have obtained.

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K