MHB Special cases for sine and cosine sum

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Cosine Sine Sum
Dustinsfl
Messages
2,217
Reaction score
5
State the special cases of the above two formulas for $n = 0, 1,$ and $2$.
These should be familiar formulas.

I don't see what is so special and familiar about when n = 2 or for cosine n = 1.When $n = 0$, we have
$$
\sum\limits_{k = 0}^0\cos k\theta = \frac{\sin\left(\frac{\theta}{2}\right)}{\sin\frac{\theta}{2}} = 1
$$
and
$$
\sum\limits_{k = 0}^0\sin k\theta = \frac{\sin\left(\frac{ \theta}{2}\right)}{\sin\frac{ \theta}{2}}\times 0 = 0.
$$
When $n = 1$, we have
$$
\sum\limits_{k = 0}^1\cos k\theta = \frac{\sin\theta}{\sin\frac{ \theta}{2}}\cos\frac{\theta}{2} = \sin\theta\cot\frac{\theta}{2}
$$
and
$$
\sum\limits_{k = 0}^1\sin k\theta = \frac{\sin\theta}{\sin\frac{\theta}{2}}\sin\frac{ \theta}{2} = \sin\theta.
$$
When $n = 2$, we have
$$
\sum\limits_{k = 0}^2\cos k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\cos\theta
$$
and
$$
\sum\limits_{k = 0}^2\sin k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\sin\theta.
$$
 
Physics news on Phys.org
dwsmith said:
State the special cases of the above two formulas for $n = 0, 1,$ and $2$.
These should be familiar formulas.

I don't see what is so special and familiar about when n = 2 or for cosine n = 1.When $n = 0$, we have
$$
\sum\limits_{k = 0}^0\cos k\theta = \frac{\sin\left(\frac{\theta}{2}\right)}{\sin\frac{\theta}{2}} = 1
$$
and
$$
\sum\limits_{k = 0}^0\sin k\theta = \frac{\sin\left(\frac{ \theta}{2}\right)}{\sin\frac{ \theta}{2}}\times 0 = 0.
$$
When $n = 1$, we have
$$
\sum\limits_{k = 0}^1\cos k\theta = \frac{\sin\theta}{\sin\frac{ \theta}{2}}\cos\frac{\theta}{2} = \sin\theta\cot\frac{\theta}{2}
$$
and
$$
\sum\limits_{k = 0}^1\sin k\theta = \frac{\sin\theta}{\sin\frac{\theta}{2}}\sin\frac{ \theta}{2} = \sin\theta.
$$
When $n = 2$, we have
$$
\sum\limits_{k = 0}^2\cos k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\cos\theta
$$
and
$$
\sum\limits_{k = 0}^2\sin k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\sin\theta.
$$

Hi dwsmith, :)

I don't understand what you meant by the "above two formulas". Is there anything missing here? :)

Kind Regards,
Sudharaka.
 
It was the formulas for cosine and sine.

$\sum\limits_{k = 0}^n\sin k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\sin\frac{n}{2}\theta$

and

$\sum\limits_{k = 0}^n\cos k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta$
 
dwsmith said:
It was the formulas for cosine and sine.

$\sum\limits_{k = 0}^n\sin k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\sin\frac{n}{2}\theta$

and

$\sum\limits_{k = 0}^n\cos k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta$

For \(n=1\) in the cosine summation you can express the result using only a cosine function as,

\[\sum\limits_{k = 0}^1\cos k\theta = \frac{\sin\theta}{\sin\frac{ \theta}{2}}\cos\frac{\theta}{2} = 2\cos^{2}\frac{\theta}{2}\]

Similarly for \(n=2\) in the sine summation,

\[\sum\limits_{k = 0}^2\sin k\theta = \frac{\sin\left(\frac{3}{2}\theta\right)}{\sin \frac{ \theta}{2}}\sin\theta=2\sin\left(\frac{3}{2}\theta\right)\cos \frac{ \theta}{2}\]

Apart from these minor simplifications, I don't see anything further that could be done to the results that you have obtained.

Kind Regards,
Sudharaka.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K