A Special & General Relativity: CTC Metrics in Cylindrical Coordinates

YRC
Messages
3
Reaction score
1
I am studying metrics that exhibit CTCs. I was looking at a few different metrics...
Tipler's solution
Godel metric
Kerr metric
For starters to compare them, I am trying to convert said metrics into cylindrical coordinates. Thanks in advance for any help😃
 
Physics news on Phys.org
YRC said:
I am trying to convert said metrics into cylindrical coordinates.
What have you found in sources that you have looked at? For the last two, at any rate, it should be easy to find expressions for the metrics in cylindrical coordinates.
 
PeterDonis said:
What have you found in sources that you have looked at? For the last two, at any rate, it should be easy to find expressions for the metrics in cylindrical coordinates.
I understand that the coordinate transform for the Godel metric would look like this, ##x^{\alpha}=(t, x, y, z)=(t, r\cos{\phi}, r\sin{\phi}, z)## for cartesian and cylindrical coordinates. The cylindrical metric itself is given by ##g_{t,t}=c^2##,##g_{r,r}=1/(1+(r/2a)^2)##, ##g_{\phi,\phi}= -r^2(1-(r/2a)^2)##, ##g_{z,z}=-1## and ##g_{t,\phi}=r^2*c/(\sqrt{2}a), g_{\phi,t}=r^2*c/(\sqrt{2}a)## right? That's what I found for Godel, For the Tipler cylinder I found it in cylindrical coordinates... ds^2 = H(dr^2+ dz^2 ) + Ldϕ^2 + 2Mdϕdt − Fdt^2 , What about the Kerr metric that is commonly expressed in Boyer-Lindquist coordinates?

Mentors' note: The Latex was posted without the required delimiters. We've edited in the delimiters but have not otherwise cleaned up the formatting. OP, would you please finish this cleanup?
 
Last edited by a moderator:
YRC said:
I am studying metrics that exhibit CTCs.
I don't know if this helps, but any (locally Minkowski) metric can exhibit CTC. For example the flat metric
$$ds^2=dt^2-dx^2$$
contains CTC's if we interpret it as a spacetime with cylindrical topology in which ##t## and ##t+2\pi## are identified. The point is that cylinder admits a flat metric, so when we say that the metric is flat, we have not excluded a possibility that it is a cylinder.

EDIT: It's not valid for any metric, but it's valid for any metric with timelike Killing vector.
 
Last edited:
Demystifier said:
I don't know if this helps, but any (locally Minkowski) metric can exhibit CTC. For example the flat metric
$$ds^2=dt^2-dx^2$$
contains CTC's if we interpret it as a spacetime with cylindrical topology in which ##t## and ##t+2\pi## are identified. The point is that cylinder admits a flat metric, so when we say that the metric is flat, we have not excluded a possibility that it is a cylinder.
Yes thanks, the Tipler cylinder metric does reduce to the Minkowski line element in cylindrical coordinates when the angular velocity is 0. I was wondering about using the Kerr metric to describe the exterior of the rotating Tipler cylinder. How would that work? Would that work? In a configuration where we have a metric describing the negative energy density required, and this exterior, would CTCs arise in a confined region bounded by the cylinder?
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top