Speed of a star in Special Relativity

Click For Summary

Homework Help Overview

The discussion revolves around a problem from Special Relativity concerning the Doppler effect in a double-star system. The original poster describes a scenario involving two stars in circular orbits and the observed Doppler shift of light emitted from one star as it travels to Earth. The problem requires showing how the observed velocity of the star changes over time based on its motion and the speed of light.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the application of classical versus relativistic Doppler shifts, questioning the assumptions made in the problem. There are attempts to relate the frequency of light emitted by the star to its motion and the distance to Earth. Some participants express uncertainty about the assumptions regarding the speed of light and how it affects the observed frequency.

Discussion Status

The conversation is ongoing, with participants exploring different interpretations of the problem. Some have offered insights into the relationship between the frequency of emitted light and the motion of the star, while others are questioning the assumptions made about the nature of light and its propagation. There is no explicit consensus on the approach to take, but various lines of reasoning are being examined.

Contextual Notes

There is mention of the original poster's confusion regarding the transition from the Doppler effect to the required expression, as well as the potential implications of the distance R and the assumption that the speed of the star is much less than the speed of light. The clarity of the assumptions made by spectroscopists regarding the Doppler shift is also under discussion.

RafaPhysics
Messages
7
Reaction score
0
Homework Statement
I've been trying to solve this problem but I'm pretty sure there's something more that I could do, but I can't see it.
Relevant Equations
$$v_r=u sin\frac{2\pi}{T}\left(t-\frac{R}{c}+\frac{Rv_r}{c^2}\right)$$
Hey, I have this problem from the Special Relativity by AP. French . Exercise 3.3, Chapter 3.
The figure shows a double-star system with two stars, A and B, in circular orbits of the same period T about their center of mass. The earth is in the plane definied by these orbits at a distance R of many light-years. Let the speed of A in its orbit be u; then at any instant it has a velocity ##v_r(=ucos\theta)## along the line from the double-star system to the earth. When light emitted from A reaches the earth, its observed Doppler shift (change of wavelength of characteristic spectral lines) reveals the value of vr at the instant of emission.
If the speed of light from A to the earth were modified by the motion of A, so as to be equal to ##c+v_r##, show that the value of ##v_r##, as inferred from spectroscopic observations on earth, would appear to be varying with time in accordance with the following equation if ##u\ll c##: It's the equation above.
I've tried with the doppler efect, but I can't still see when It turns to ##sin##, there's something more but simply I can't see it. Please I need help.
 

Attachments

  • Problema Relatividad.jpg
    Problema Relatividad.jpg
    42.8 KB · Views: 103
Physics news on Phys.org
I guess only AP French knows what laws of physics apply and which do not in this case! I'd assumed he means using the classical Doppler shift, without time dilation. I.e. assuming Newtonian physics with no invariant speed. Is that what you did?
 
PeroK said:
I guess only AP French knows what laws of physics apply and which do not in this case! I'd assumed he means using the classical Doppler shift, without time dilation. I.e. assuming Newtonian physics with no invariant speed. Is that what you did?
Yes, I did it. But I only come to the expression of the Doppler efect, but from that point to the expression above there's still a world of difference.
 
RafaPhysics said:
Yes, I did it. But I only come to the expression of the Doppler efect, but from that point to the expression above there's still a world of difference.
Why did you choose the AP French book?

I'm must admit, I'm not sure what he's assuming. Perhaps, if we assume that ##f_s## is the frequency at the source, then the crests of a light wave would be emitted at time ##\frac 1 {f_s}## apart. And, in that time, ##v_r## would increase by a tiny amount. The next crest would catch up with the one before it. That would explain why the distance ##R## gets into the equation. If ##R## was too large, then the light wave crests would arrive out of sequence! The assumption ##u \ll c## might be there to ensure that the crests arrive in the correct order?! Or, maybe not! Maybe the observation of adjacent crests coincide?!

If you are not too committed to French, I'd try another book. In any case, I'd be tempted to skip this question.
 
PS and it's not clear what the spectroscopists assume. Do they assume the relativistic Doppler shift? Is that the idea?
 
PeroK said:
PS and it's not clear what the spectroscopists assume. Do they assume the relativistic Doppler shift? Is that the idea?
I think they assume that the velocity of ligth depends of source motion, like It was Galilean, I had an idea, I have to take an infinitesimal time interval, after that take an infinitesimal distance interval, and then divide it by the already calculated time interval, but it still doesn't give the result.
 
RafaPhysics said:
I think they assume that the velocity of ligth depends of source motion, like It was Galilean, I had an idea, I have to take an infinitesimal time interval, after that take an infinitesimal distance interval, and then divide it by the already calculated time interval, but it still doesn't give the result.
It's not to do with infinitesimals For the emission event:
$$\frac{dv_r}{dt} = \frac{d}{dt}(u\cos \theta) = -u(\sin \theta)\frac{d\theta}{dt} = -u(\frac{2\pi}{T})\sin \theta$$$$\Delta v_r = \frac{dv_r}{dt}\Delta t = \frac{dv_r}{dt}\frac 1 {f_s} = $$For the observation event:
$$t_1 = \frac{R}{c + v_r}, \ t_2 = \frac{1}{f_s} + \frac{R}{c +v_r + \Delta v_r}$$$$f_o = \frac{1}{t_2 - t_1}$$And so on ...
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
14
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 35 ·
2
Replies
35
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K