Special relativity and Lorentz Transformation Exercise

Click For Summary
The discussion focuses on a special relativity problem involving a rocket's journey as analyzed through Lorentz transformations. Participants clarify the definitions of the stationary frame (S) and the moving frame (S'), emphasizing the importance of correctly identifying the rest frame of the rocket. They suggest using non-relativistic mechanics initially to build intuition before applying the Lorentz transformations for accurate calculations. The conversation highlights the complexity of the problem, with users sharing strategies for organizing information and deriving equations to find the speeds and return time of the rocket. Overall, the thread provides insights into tackling relativistic motion problems while encouraging a methodical approach to problem-solving.
  • #31
Did you get that ##t'_B =2## years? Note that that is also true in classical mechanics.

I did suggest writing down all of the LTs and finding the simplest one. That was:$$x_B = \gamma(0 +vt'_B)$$That gives you a value for the quantity ##\gamma v##. I explained in a previous post how to deal with that.
 
  • Like
Likes R3ap3r42
Physics news on Phys.org
  • #32
I finally got it.
a) and c) were straightforward and match the expected result.
For b) I got 2 different values depending on if I use O to A or A to B to get u.
Is this correct? If so the question should have specified which direction right?

1642759326626.png


My sincere thanks to @PeroK, @Ibix, @vela etc. I really appreciate the tough-love. I can honestly say I have learned loads just with this one question.
 
  • Like
Likes PeroK and BvU
  • #33
Here's my minimialist solution (natural units):
$$x_B = \gamma(0 + vt'_B) = 2\gamma v \ \Rightarrow \ \gamma = \sqrt 5, v = \frac 2 5 \sqrt 5$$$$t_B = \gamma(t'_B) = 2\gamma = 2\sqrt 5$$$$x_A = \gamma(x'_A + vt'_A) \ \Rightarrow x'_A = -\frac{11}{25}\sqrt 5$$$$x'_A = -ut'_A \ \Rightarrow \ u = \frac{11}{25}\sqrt 5$$To double check, we calculate the speeds of the rocket in the S frame:
$$u_A = \frac{-u + v}{1-uv} = -\frac{1}{3}\sqrt 5 \ \Rightarrow \ t_A = \frac{x_A}{u_A} = \frac{3}{25}\sqrt 5$$$$u_B = \frac{u + v}{1+uv} = \frac{21}{47}\sqrt 5$$And we can confirm that:$$x_B = u_At_A + u_B(t_B-t_A) = 4$$
 
Last edited:
  • Like
Likes Ibix and R3ap3r42
  • #34
R3ap3r42 said:
For b) I got 2 different values depending on if I use O to A or A to B to get u.
Is this correct? If so the question should have specified which direction right?
You should have gotten the same speed for both directions. Remember that ##u## is the speed of the rocket as seen by an observer at rest in ##S'##. The speed you calculated using OA, for instance, is the speed of the rocket an observer at rest in ##S## would see.
 
  • Like
Likes R3ap3r42
  • #35
Yes, I understand that now. I got the values described by @PeroK, which are the velocities S sees the rocket coming and going.
The question asked u in the S' frame so only one value for both legs of the trip.
Thanks a lot for all the help.
 
  • #36
I'd just want to echo something @vela said upthread: spacetime diagrams are incredibly useful for visualising these problems. They are essentially displacement-time graphs (if you've come across those) with the time axis up the page. You can draw one for each frame and mark events and worldlines on them and they are a great tool for seeing roughly what the solution must be before you start plugging in numbers.
 

Similar threads

Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K