Speed of sound in a relativistic fluid

etotheipi
Homework Statement
Derive the speed of sound in an ##\mathrm{\mathbf{isolated}}## and ##\mathrm{\mathbf{homogeneous}}## simple fluid, by considering small first-order adiabatic perturbations to the fluid.

Assume an equation of state ##p = p(\epsilon, S)## where ##\epsilon## is the ##\mathrm{\mathbf{proper \, energy \, density}}:= \mathbf{T}(\mathbf{\vec{u}}, \mathbf{\vec{u}})## of the fluid [with ##\mathbf{\vec{u}}## the 4-velocity of a co-moving observer ##\mathscr{C}##] and ##S:= s/n## is the ##\mathrm{\mathbf{entropy\, per\, baryon}}##.
Relevant Equations
Fluid energy equation:$$\partial_t E + \boldsymbol{\nabla} \cdot ([E+p]\mathbf{\vec{V}}) = P_{\text{ext}}$$Relativistic Euler equation:$$\partial_t \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \mathbf{\vec{V}} = - \frac{c^2}{E+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) + \frac{c^2}{E+p} \mathbf{\vec{F}}_{\text{ext}}$$where ##\tilde{\nabla}## denotes the purely spatial gradient operator. Also, ##\mathbf{\vec{V}}## [the "fluid velocity with respect to ##\mathscr{O}##" 4-vector] is defined by the orthogonal decomposition:$$\mathbf{\vec{u}}_{\mathscr{C}} = \gamma \left( \mathbf{\vec{u}}_{\mathscr{O}} + \frac{1}{c} \mathbf{\vec{V}} \right)$$with ##\mathscr{C}## being a co-moving observer and ##\mathscr{O}## a general observer.
Let us consider the co-moving observer ##\mathscr{C}## for whom ##E = \epsilon## and ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##. Doing the perturbation stuff to the first of the relevant equations gives$$\partial_t \delta \epsilon + \boldsymbol{\nabla} \cdot ([\epsilon + p] \delta \mathbf{\vec{V}}) = \delta P_{\text{ext}} = 0$$since ##\delta [(\epsilon + p) \mathbf{\vec{V}}] = (\delta [\epsilon + p]) \mathbf{\vec{0}} + (\epsilon + p) \delta \mathbf{\vec{V}}##. To the second relevant equation the perturbation is similarly$$
\begin{align*}
\partial_t \delta \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}} &= - \delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] + \delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] \\

\end{align*}$$Because the fluid is homogenous, ##\tilde{\nabla} p = 0## and given also that ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##, I think that the first term will reduce to:$$
\begin{align*}
\delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] &= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} \mathbf{\vec{V}} \partial_t \delta p+ \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right) \\

&= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right)

\end{align*}$$whilst since ##\delta \mathbf{\vec{F}}_{\text{ext}} = \mathbf{\vec{0}}##, the second term is$$\delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] = \frac{-c^2}{(\epsilon + p)^2} \mathbf{\vec{F}}_{\text{ext}} \delta (\epsilon + p)$$I'm not really sure how to clean this up. I don't know what ##\boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}}## reduces to, and I don't know how to get rid of the 4-force ##\mathbf{\vec{F}}_{\text{ext}}## and external power density ##P_{\text{ext}}##. Also, given the change is adiabatic I can write down from the equation of state:$$\delta p = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon + \frac{\partial p}{\partial S} \big{|}_{\epsilon} \delta S = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon$$How do I tidy up the perturbation, and then somehow extract a wave equation from that? Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
Oh wait; it's isolated and so both ##\mathbf{F}_{\text{ext}}## and ##P_{\text{ext}} = 0##, right, and furthermore due to the homogeneity ##\epsilon## and ##p## are constants thus ##\delta(\epsilon + p) = 0## too? Also, presumably ##\partial_t p = 0## also due to time-independence! o:) Okay, I think I can clean this up! We have:$$
\begin{align*}

\partial_t \delta \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}} &=

\frac{-c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p \right) = \frac{-c^2}{\epsilon + p} \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla} \delta \epsilon
\end{align*}
$$and for the other equation, again since ##\epsilon## and ##p## are independent of position,$$\partial_t \delta \epsilon + (\epsilon + p)\boldsymbol{\nabla} \cdot \delta \mathbf{\vec{V}}= 0$$Hmm, it's a bit simpler, but still not that simple! I can substitute in my ##\delta p## from the thermodynamic equation of state, but I still don't know how to deal with the ##\boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}}## term!
 
Last edited by a moderator:
To derive the sound waves you work in the rest frame of the unpertubed fluid, assuming it's in thermal equilibrium. Then ##\vec{v}=\delta \vec{v}##. Since thus ##\nabla_{\vec{v}} \vec{V}=\delta \vec{v} \cdot \delta \vec{v}=\mathcal{O}(\delta^2)=\simeq 0##. Further you can also use ##\epsilon+p=\epsilon_0+p_0## and ##(\partial p/\partial \epsilon)_S=(\partial p/\partial \epsilon)_{S0}##, because these expressions multiply quantities which are already in 1st order of the perturbations. Now eliminate ##\delta \vec{v}## from your 2nd equation, using the first (taking into account the said approximations). Then interpret the resulting equation to get the speed of sound.
 
Thanks @vanhees71, yes I think I can do it now!

Although how I defined it above ##\mathbf{\vec{V}}## is a 4-vector, it's an orthogonal projection onto the observer's local rest space ##\mathscr{E}_{\mathbf{\vec{u}}_{\mathscr{O}}}## and hence has zero time component w.r.t. his basis vectors, i.e. ##\mathbf{\vec{V}} \equiv (0, \vec{V})##. Thus reformulating in terms of 3-vectors and then acting ##\tilde{\nabla} \cdot## on the first equation gives$$
\partial_t \tilde{\nabla} \cdot \delta \vec{V} = \frac{-c^2}{\epsilon + p} \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla}^2 \delta \epsilon
$$whilst taking the time derivative of the second equation gives$$\partial_t \delta \epsilon + (\epsilon + p) \partial_t \tilde{\nabla} \cdot \delta \vec{V}= 0$$Hence eliminating ##\partial_t \tilde{\nabla} \cdot \delta \vec{V}## results in the equation$$\partial_t^2 \delta \epsilon = c^2 \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla}^2 \delta \epsilon$$from which it follows that$$c_{\text{sound}} = c \sqrt{\frac{\partial p}{\partial \epsilon} \big{|}_{S}}$$😄
 
Last edited by a moderator:
Argh. I should have read your posting more carefully. For me everything with an arrow is a three-vector, which can be simply the three spatial components of a four-vector wrt. a Minkowski-orthonormal basis or one of the two three-vectors making up an antisymmetric Minkowski tensor (as ##\vec{E}## and ##\vec{B}## making up the Faraday tensor components ##F_{\mu \nu}## wrt. a Minkowski-orthonormal basis).
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top