Speed of sound in a relativistic fluid

Click For Summary

Homework Help Overview

The discussion revolves around the speed of sound in a relativistic fluid, focusing on the equations governing perturbations in a co-moving observer's frame. Participants explore the implications of homogeneity and the conditions under which the fluid is isolated, leading to simplifications in the governing equations.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants examine perturbation equations, questioning how to simplify terms involving external forces and pressure. There is discussion about the implications of homogeneity and the independence of certain variables, as well as the need to derive a wave equation from the perturbations.

Discussion Status

The conversation has progressed with some participants offering insights into simplifying the equations and interpreting the results. There is an acknowledgment of the need to eliminate certain terms and a recognition of the conditions under which the fluid's properties can be treated as constants.

Contextual Notes

Participants note that the fluid is isolated, leading to the conclusion that external forces and pressures are zero. The discussion also highlights the assumption of thermal equilibrium and the implications of working in the rest frame of the unperturbed fluid.

etotheipi
Homework Statement
Derive the speed of sound in an ##\mathrm{\mathbf{isolated}}## and ##\mathrm{\mathbf{homogeneous}}## simple fluid, by considering small first-order adiabatic perturbations to the fluid.

Assume an equation of state ##p = p(\epsilon, S)## where ##\epsilon## is the ##\mathrm{\mathbf{proper \, energy \, density}}:= \mathbf{T}(\mathbf{\vec{u}}, \mathbf{\vec{u}})## of the fluid [with ##\mathbf{\vec{u}}## the 4-velocity of a co-moving observer ##\mathscr{C}##] and ##S:= s/n## is the ##\mathrm{\mathbf{entropy\, per\, baryon}}##.
Relevant Equations
Fluid energy equation:$$\partial_t E + \boldsymbol{\nabla} \cdot ([E+p]\mathbf{\vec{V}}) = P_{\text{ext}}$$Relativistic Euler equation:$$\partial_t \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \mathbf{\vec{V}} = - \frac{c^2}{E+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) + \frac{c^2}{E+p} \mathbf{\vec{F}}_{\text{ext}}$$where ##\tilde{\nabla}## denotes the purely spatial gradient operator. Also, ##\mathbf{\vec{V}}## [the "fluid velocity with respect to ##\mathscr{O}##" 4-vector] is defined by the orthogonal decomposition:$$\mathbf{\vec{u}}_{\mathscr{C}} = \gamma \left( \mathbf{\vec{u}}_{\mathscr{O}} + \frac{1}{c} \mathbf{\vec{V}} \right)$$with ##\mathscr{C}## being a co-moving observer and ##\mathscr{O}## a general observer.
Let us consider the co-moving observer ##\mathscr{C}## for whom ##E = \epsilon## and ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##. Doing the perturbation stuff to the first of the relevant equations gives$$\partial_t \delta \epsilon + \boldsymbol{\nabla} \cdot ([\epsilon + p] \delta \mathbf{\vec{V}}) = \delta P_{\text{ext}} = 0$$since ##\delta [(\epsilon + p) \mathbf{\vec{V}}] = (\delta [\epsilon + p]) \mathbf{\vec{0}} + (\epsilon + p) \delta \mathbf{\vec{V}}##. To the second relevant equation the perturbation is similarly$$
\begin{align*}
\partial_t \delta \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}} &= - \delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] + \delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] \\

\end{align*}$$Because the fluid is homogenous, ##\tilde{\nabla} p = 0## and given also that ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##, I think that the first term will reduce to:$$
\begin{align*}
\delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] &= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} \mathbf{\vec{V}} \partial_t \delta p+ \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right) \\

&= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right)

\end{align*}$$whilst since ##\delta \mathbf{\vec{F}}_{\text{ext}} = \mathbf{\vec{0}}##, the second term is$$\delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] = \frac{-c^2}{(\epsilon + p)^2} \mathbf{\vec{F}}_{\text{ext}} \delta (\epsilon + p)$$I'm not really sure how to clean this up. I don't know what ##\boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}}## reduces to, and I don't know how to get rid of the 4-force ##\mathbf{\vec{F}}_{\text{ext}}## and external power density ##P_{\text{ext}}##. Also, given the change is adiabatic I can write down from the equation of state:$$\delta p = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon + \frac{\partial p}{\partial S} \big{|}_{\epsilon} \delta S = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon$$How do I tidy up the perturbation, and then somehow extract a wave equation from that? Thanks!
 
Last edited by a moderator:
  • Like
Likes   Reactions: JD_PM
Physics news on Phys.org
Oh wait; it's isolated and so both ##\mathbf{F}_{\text{ext}}## and ##P_{\text{ext}} = 0##, right, and furthermore due to the homogeneity ##\epsilon## and ##p## are constants thus ##\delta(\epsilon + p) = 0## too? Also, presumably ##\partial_t p = 0## also due to time-independence! o:) Okay, I think I can clean this up! We have:$$
\begin{align*}

\partial_t \delta \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}} &=

\frac{-c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p \right) = \frac{-c^2}{\epsilon + p} \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla} \delta \epsilon
\end{align*}
$$and for the other equation, again since ##\epsilon## and ##p## are independent of position,$$\partial_t \delta \epsilon + (\epsilon + p)\boldsymbol{\nabla} \cdot \delta \mathbf{\vec{V}}= 0$$Hmm, it's a bit simpler, but still not that simple! I can substitute in my ##\delta p## from the thermodynamic equation of state, but I still don't know how to deal with the ##\boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}}## term!
 
Last edited by a moderator:
To derive the sound waves you work in the rest frame of the unpertubed fluid, assuming it's in thermal equilibrium. Then ##\vec{v}=\delta \vec{v}##. Since thus ##\nabla_{\vec{v}} \vec{V}=\delta \vec{v} \cdot \delta \vec{v}=\mathcal{O}(\delta^2)=\simeq 0##. Further you can also use ##\epsilon+p=\epsilon_0+p_0## and ##(\partial p/\partial \epsilon)_S=(\partial p/\partial \epsilon)_{S0}##, because these expressions multiply quantities which are already in 1st order of the perturbations. Now eliminate ##\delta \vec{v}## from your 2nd equation, using the first (taking into account the said approximations). Then interpret the resulting equation to get the speed of sound.
 
  • Like
Likes   Reactions: etotheipi
Thanks @vanhees71, yes I think I can do it now!

Although how I defined it above ##\mathbf{\vec{V}}## is a 4-vector, it's an orthogonal projection onto the observer's local rest space ##\mathscr{E}_{\mathbf{\vec{u}}_{\mathscr{O}}}## and hence has zero time component w.r.t. his basis vectors, i.e. ##\mathbf{\vec{V}} \equiv (0, \vec{V})##. Thus reformulating in terms of 3-vectors and then acting ##\tilde{\nabla} \cdot## on the first equation gives$$
\partial_t \tilde{\nabla} \cdot \delta \vec{V} = \frac{-c^2}{\epsilon + p} \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla}^2 \delta \epsilon
$$whilst taking the time derivative of the second equation gives$$\partial_t \delta \epsilon + (\epsilon + p) \partial_t \tilde{\nabla} \cdot \delta \vec{V}= 0$$Hence eliminating ##\partial_t \tilde{\nabla} \cdot \delta \vec{V}## results in the equation$$\partial_t^2 \delta \epsilon = c^2 \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla}^2 \delta \epsilon$$from which it follows that$$c_{\text{sound}} = c \sqrt{\frac{\partial p}{\partial \epsilon} \big{|}_{S}}$$😄
 
Last edited by a moderator:
  • Like
Likes   Reactions: vanhees71
Argh. I should have read your posting more carefully. For me everything with an arrow is a three-vector, which can be simply the three spatial components of a four-vector wrt. a Minkowski-orthonormal basis or one of the two three-vectors making up an antisymmetric Minkowski tensor (as ##\vec{E}## and ##\vec{B}## making up the Faraday tensor components ##F_{\mu \nu}## wrt. a Minkowski-orthonormal basis).
 
  • Like
Likes   Reactions: etotheipi

Similar threads

Replies
7
Views
3K
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
Replies
8
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K