Speed of sound in a relativistic fluid

etotheipi
Homework Statement
Derive the speed of sound in an ##\mathrm{\mathbf{isolated}}## and ##\mathrm{\mathbf{homogeneous}}## simple fluid, by considering small first-order adiabatic perturbations to the fluid.

Assume an equation of state ##p = p(\epsilon, S)## where ##\epsilon## is the ##\mathrm{\mathbf{proper \, energy \, density}}:= \mathbf{T}(\mathbf{\vec{u}}, \mathbf{\vec{u}})## of the fluid [with ##\mathbf{\vec{u}}## the 4-velocity of a co-moving observer ##\mathscr{C}##] and ##S:= s/n## is the ##\mathrm{\mathbf{entropy\, per\, baryon}}##.
Relevant Equations
Fluid energy equation:$$\partial_t E + \boldsymbol{\nabla} \cdot ([E+p]\mathbf{\vec{V}}) = P_{\text{ext}}$$Relativistic Euler equation:$$\partial_t \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \mathbf{\vec{V}} = - \frac{c^2}{E+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) + \frac{c^2}{E+p} \mathbf{\vec{F}}_{\text{ext}}$$where ##\tilde{\nabla}## denotes the purely spatial gradient operator. Also, ##\mathbf{\vec{V}}## [the "fluid velocity with respect to ##\mathscr{O}##" 4-vector] is defined by the orthogonal decomposition:$$\mathbf{\vec{u}}_{\mathscr{C}} = \gamma \left( \mathbf{\vec{u}}_{\mathscr{O}} + \frac{1}{c} \mathbf{\vec{V}} \right)$$with ##\mathscr{C}## being a co-moving observer and ##\mathscr{O}## a general observer.
Let us consider the co-moving observer ##\mathscr{C}## for whom ##E = \epsilon## and ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##. Doing the perturbation stuff to the first of the relevant equations gives$$\partial_t \delta \epsilon + \boldsymbol{\nabla} \cdot ([\epsilon + p] \delta \mathbf{\vec{V}}) = \delta P_{\text{ext}} = 0$$since ##\delta [(\epsilon + p) \mathbf{\vec{V}}] = (\delta [\epsilon + p]) \mathbf{\vec{0}} + (\epsilon + p) \delta \mathbf{\vec{V}}##. To the second relevant equation the perturbation is similarly$$
\begin{align*}
\partial_t \delta \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}} &= - \delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] + \delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] \\

\end{align*}$$Because the fluid is homogenous, ##\tilde{\nabla} p = 0## and given also that ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##, I think that the first term will reduce to:$$
\begin{align*}
\delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] &= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} \mathbf{\vec{V}} \partial_t \delta p+ \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right) \\

&= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right)

\end{align*}$$whilst since ##\delta \mathbf{\vec{F}}_{\text{ext}} = \mathbf{\vec{0}}##, the second term is$$\delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] = \frac{-c^2}{(\epsilon + p)^2} \mathbf{\vec{F}}_{\text{ext}} \delta (\epsilon + p)$$I'm not really sure how to clean this up. I don't know what ##\boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}}## reduces to, and I don't know how to get rid of the 4-force ##\mathbf{\vec{F}}_{\text{ext}}## and external power density ##P_{\text{ext}}##. Also, given the change is adiabatic I can write down from the equation of state:$$\delta p = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon + \frac{\partial p}{\partial S} \big{|}_{\epsilon} \delta S = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon$$How do I tidy up the perturbation, and then somehow extract a wave equation from that? Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
Oh wait; it's isolated and so both ##\mathbf{F}_{\text{ext}}## and ##P_{\text{ext}} = 0##, right, and furthermore due to the homogeneity ##\epsilon## and ##p## are constants thus ##\delta(\epsilon + p) = 0## too? Also, presumably ##\partial_t p = 0## also due to time-independence! o:) Okay, I think I can clean this up! We have:$$
\begin{align*}

\partial_t \delta \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}} &=

\frac{-c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p \right) = \frac{-c^2}{\epsilon + p} \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla} \delta \epsilon
\end{align*}
$$and for the other equation, again since ##\epsilon## and ##p## are independent of position,$$\partial_t \delta \epsilon + (\epsilon + p)\boldsymbol{\nabla} \cdot \delta \mathbf{\vec{V}}= 0$$Hmm, it's a bit simpler, but still not that simple! I can substitute in my ##\delta p## from the thermodynamic equation of state, but I still don't know how to deal with the ##\boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}}## term!
 
Last edited by a moderator:
To derive the sound waves you work in the rest frame of the unpertubed fluid, assuming it's in thermal equilibrium. Then ##\vec{v}=\delta \vec{v}##. Since thus ##\nabla_{\vec{v}} \vec{V}=\delta \vec{v} \cdot \delta \vec{v}=\mathcal{O}(\delta^2)=\simeq 0##. Further you can also use ##\epsilon+p=\epsilon_0+p_0## and ##(\partial p/\partial \epsilon)_S=(\partial p/\partial \epsilon)_{S0}##, because these expressions multiply quantities which are already in 1st order of the perturbations. Now eliminate ##\delta \vec{v}## from your 2nd equation, using the first (taking into account the said approximations). Then interpret the resulting equation to get the speed of sound.
 
Thanks @vanhees71, yes I think I can do it now!

Although how I defined it above ##\mathbf{\vec{V}}## is a 4-vector, it's an orthogonal projection onto the observer's local rest space ##\mathscr{E}_{\mathbf{\vec{u}}_{\mathscr{O}}}## and hence has zero time component w.r.t. his basis vectors, i.e. ##\mathbf{\vec{V}} \equiv (0, \vec{V})##. Thus reformulating in terms of 3-vectors and then acting ##\tilde{\nabla} \cdot## on the first equation gives$$
\partial_t \tilde{\nabla} \cdot \delta \vec{V} = \frac{-c^2}{\epsilon + p} \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla}^2 \delta \epsilon
$$whilst taking the time derivative of the second equation gives$$\partial_t \delta \epsilon + (\epsilon + p) \partial_t \tilde{\nabla} \cdot \delta \vec{V}= 0$$Hence eliminating ##\partial_t \tilde{\nabla} \cdot \delta \vec{V}## results in the equation$$\partial_t^2 \delta \epsilon = c^2 \frac{\partial p}{\partial \epsilon} \big{|}_{S} \tilde{\nabla}^2 \delta \epsilon$$from which it follows that$$c_{\text{sound}} = c \sqrt{\frac{\partial p}{\partial \epsilon} \big{|}_{S}}$$😄
 
Last edited by a moderator:
Argh. I should have read your posting more carefully. For me everything with an arrow is a three-vector, which can be simply the three spatial components of a four-vector wrt. a Minkowski-orthonormal basis or one of the two three-vectors making up an antisymmetric Minkowski tensor (as ##\vec{E}## and ##\vec{B}## making up the Faraday tensor components ##F_{\mu \nu}## wrt. a Minkowski-orthonormal basis).
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top