MHB Spherical Harmonics: Showing $\delta_{m,0}\sqrt{\frac{2\ell + 1}{4\pi}}$

Click For Summary
The discussion centers on demonstrating the identity \(Y_{\ell}^m(0,\varphi) = \delta_{m,0}\sqrt{\frac{2\ell + 1}{4\pi}}\). The key point is that when \(m = 0\), the expression yields \(\sqrt{\frac{2\ell + 1}{4\pi}}\), while for other values of \(m\), the result should be zero. The confusion arises from the misunderstanding of the associated Legendre polynomial's behavior at \(\theta = 0\), where it is zero for non-zero \(m\). Ultimately, it is confirmed that the expression holds true, as non-zero \(m\) leads to zero due to the properties of the associated Legendre polynomial. The discussion concludes with the clarification that \(P_l^m(1) = 1\) is only valid for \(m = 0\).
Dustinsfl
Messages
2,217
Reaction score
5
I am trying to show that
\[
Y_{\ell}^m(0,\varphi) = \delta_{m,0}\sqrt{\frac{2\ell + 1}{4\pi}}.
\]
When \(m = 0\), I obtain \(\sqrt{\frac{2\ell + 1}{4\pi}}\).

However, I am not getting 0 for other \(m\). Plus, to show this is true, I can't methodically go through each \(m\).

How can I do this?
 
Mathematics news on Phys.org
dwsmith said:
I am trying to show that
\[
Y_{\ell}^m(0,\varphi) = \delta_{m,0}\sqrt{\frac{2\ell + 1}{4\pi}}.
\]
When \(m = 0\), I obtain \(\sqrt{\frac{2\ell + 1}{4\pi}}\).

However, I am not getting 0 for other \(m\). Plus, to show this is true, I can't methodically go through each \(m\).

How can I do this?
The [math]\delta _{m, 0} [/math] forces the expression to be 0 unless m = 0. There is no other m to compute with. I'm not sure what you are trying to get at with the "other" m values?

-Dan
 
topsquark said:
The [math]\delta _{m, 0} [/math] forces the expression to be 0 unless m = 0. There is no other m to compute with. I'm not sure what you are trying to get at with the "other" m values?

-Dan

I understand the kronecker delta. I am trying to show the identity is true.
 
dwsmith said:
I understand the kronecker delta. I am trying to show the identity is true.
Oh! I see the problem now. Yes, the expression is not correct.
[math]Y_l^m( \theta, \phi ) = (-1)^m \sqrt{ \frac{2l + 1}{4 \pi} \frac{(l - m)!}{(l + m)!}} P_l^m( cos ( \theta ) ) e^{i m \phi }[/math]

Gah! I can't get the LaTeX to code the second line. Anyway, the only term that drops out for theta = 0 is the associated Legendre polynomial. Not much of a simplification. Are you perhaps adding some together?

-Dan
 
Last edited by a moderator:
topsquark said:
Oh! I see the problem now. Yes, the expression is not correct.
[math]Y_l^m( \theta, \phi ) = (-1)^m \sqrt{ \frac{2l + 1}{4 \pi} \frac{(l - m)!}{(l + m)!}} P_l^m( cos ( \theta ) ) e^{i m \phi }[/math]

Gah! I can't get the LaTeX to code the second line. Anyway, the only term that drops out for theta = 0 is the associated Legendre polynomial. Not much of a simplification. Are you perhaps adding some together?

-Dan

No but I am pretty sure it is correct. I have Mathematica so I have entered in SphericalY[l,m,0,\phi] and tried different l's and m's, but every time m is nonzero, I do get zero back.
 
dwsmith said:
No but I am pretty sure it is correct. I have Mathematica so I have entered in SphericalY[l,m,0,\phi] and tried different l's and m's, but every time m is nonzero, I do get zero back.
Okay, yes you are correct. I had been thinking that [math]P_l^m(1) = 1[/math] but that's only true for m = 0. When theta = 0 [math]P_l^m(1) = 0[/math] for non-zero m as all the non-zero m are proportional to sin(theta).

-Dan
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
683
  • · Replies 6 ·
Replies
6
Views
7K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K