Spinors and eigenspinors confusion

Click For Summary

Discussion Overview

The discussion revolves around the concepts of spinors and eigenspinors in the context of spin 1/2 particles, particularly focusing on the representations of these mathematical objects in different bases, eigenvalues associated with spin operators, and the relationships between coefficients in spinor representations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants express confusion regarding the definitions and roles of spinors and eigenspinors, specifically the notation and eigenvalues associated with ##\chi_+##.
  • There is a question about the derivation of the matrix expression used to find the eigenvalue of ##S_x##, with one participant providing a determinant approach but not clarifying its origin.
  • Participants discuss the representation of spinors in different bases, particularly how to express a spinor in the z basis when it is given in the x basis.
  • One participant questions the relationship between the expression for the spinor and the probability of measuring a specific eigenvalue, indicating a lack of clarity on how these concepts are connected.
  • Another participant describes the mapping between spin vectors and their components in the eigenbasis of ##\hat{s}_3##, discussing the orthonormality of eigenvectors and the implications for operators acting on spinors.

Areas of Agreement / Disagreement

Participants generally express confusion and seek clarification on various aspects of spinors and eigenspinors, indicating that multiple competing views and interpretations exist without a clear consensus on certain definitions and relationships.

Contextual Notes

Some limitations in understanding arise from the dependence on specific definitions and the mathematical steps involved in transitioning between different bases, which remain unresolved in the discussion.

happyparticle
Messages
490
Reaction score
24
TL;DR
Spinors and eigenspinors of ##S_z## and ##S_x## for a spin 1/2
Hi,
While studying the spin 1/2, I'm facing some confusions about the spinors and the eigenspinors.

I understand that ##\chi = \begin{bmatrix}a \\ b \end{bmatrix}## is the spinor with ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}## and ##\chi_-= \begin{bmatrix}0 \\ 1 \end{bmatrix}## the eigenspinors.

However, in my book I have ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}, (eigenvalue + \frac{\hbar}{2})## which I'm not sure to understand.
Furthermore, to find the eigenvalue of ##S_x##, Griffith uses ##\begin{bmatrix}-\lambda & \frac{\hbar}{2}\\ \frac{\hbar}{2} & -\lambda \end{bmatrix} = 0##, but I don't see where this expression come from?
Finally, he says that ##\chi = (\frac{a+b}{\sqrt{2}} \chi_+ + \frac{a-b}{\sqrt{2}} \chi_-)##, which I suposse ##\frac{a+b}{\sqrt{2}} = a ## and ##\frac{a-b}{\sqrt{2}} = b##, again I'm not sure how he get those expressions for a and b.
 
Physics news on Phys.org
happyparticle said:
TL;DR Summary: Spinors and eigenspinors of ##S_z## and ##S_x## for a spin 1/2

Hi,
While studying the spin 1/2, I'm facing some confusions about the spinors and the eigenspinors.

I understand that ##\chi = \begin{bmatrix}a \\ b \end{bmatrix}## is the spinor with ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}## and ##\chi_-= \begin{bmatrix}0 \\ 1 \end{bmatrix}## the eigenspinors.

However, in my book I have ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}, (eigenvalue + \frac{\hbar}{2})## which I'm not sure to understand.
Furthermore, to find the eigenvalue of ##S_x##, Griffith uses ##\begin{bmatrix}-\lambda & \frac{\hbar}{2}\\ \frac{\hbar}{2} & -\lambda \end{bmatrix} = 0##, but I don't see where this expression come from?
Finally, he says that ##\chi = (\frac{a+b}{\sqrt{2}} \chi_+ + \frac{a-b}{\sqrt{2}} \chi_-)##, which I suposse ##\frac{a+b}{\sqrt{2}} = a ## and ##\frac{a-b}{\sqrt{2}} = b##, again I'm not sure how he get those expressions for a and b.
You are close. To find the eigenvalues we take the determinant of ##S_x - I \lambda## and set it equal to 0:
##\left | \dfrac{\hbar}{2} \left ( \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right ) - \left ( \begin{matrix} \lambda & 0 \\ 0 & \lambda \end{matrix} \right ) \right | = 0##

The last statement is going to take a bit more work and I'm going to try to be a bit psychic because you didn't say where this came from.

The +x eigenvector written in the z basis is
## \dfrac{1}{\sqrt{2}} \left ( \begin{matrix} 1 \\ 1 \end{matrix} \right )##

and the -x eigenvector is written as
## \dfrac{1}{\sqrt{2}} \left ( \begin{matrix} 1 \\ -1 \end{matrix} \right )##

So, I believe the question is: If ##\chi = \left ( \begin{matrix} a \\ b \end{matrix} \right )## is written in the x basis, how can we rewrite this in the z basis?

-Dan
 
  • Like
Likes   Reactions: vanhees71
topsquark said:
So, I believe the question is: If ##\chi = \left ( \begin{matrix} a \\ b \end{matrix} \right )## is written in the x basis, how can we rewrite this in the z basis?
I'm not totally sure, but I think ##\chi## is in x basis.
Since the expression is ##
\chi = (\frac{a+b}{\sqrt{2}} \chi_+^{x} + \frac{a-b}{\sqrt{2}} \chi_-^{x})##

I'm still not sure to understand the expression ##
\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}, (eigenvalue + \frac{\hbar}{2})
##
Is ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix},## and/or ##(eigenvalue + \frac{\hbar}{2})## ?

Griffith says, if you mesure ##S_x##, the probability of getting ##+\hbar/2## is ##(1/2) |a+b|^2##.
There should be a link with the expression above, but I don't see why he says the probability of getting ##+ \hbar/2##
 
Last edited:
If you work in a basis of eigenvectors of ##\hat{s}_3##, ##|s_3 \rangle##, with the eigenvalues ##s_3 \in \{\hbar/2,-\hbar/2 \}##, then you can write any spin vector as
$$|\chi \rangle=a |\hbar/2 \rangle + b |\hbar/2 \rangle.$$
Then there is a one-to-one mapping between the vectors and their components wrt. that basis
$$\chi \rangle \mapsto \begin{pmatrix} a \\ b \end{pmatrix}.$$
Then the eigenvectors are orthonormal, i.e., ##a=\langle \hbar/2 |\chi \rangle=\chi_{\hbar/2}## and ##b=\langle \hbar/2|\chi \rangle=\chi_{-\hbar/2}##.
Any operator acting on the spinors then has a one-to-one map to ##2 \times 2## matrices:
$$\hat{A} |\chi \rangle=\sum_{s_{31},s_{32}} |s_{31} \rangle \langle s_{31}|\hat{A} s_{32} \rangle \langle{s_{32}}|\chi \rangle.$$
The matrix elements are
$$A_{s_{31} s_{32}}=\langle s_{31}|\hat{A} s_{32} \rangle \langle{s_{32}}$$
and the corresponding matrix
$$\hat{A}=\begin{pmatrix} A_{\hbar/2,\hbar/2} & A_{\hbar/2,-\hbar/2} \\ A_{-\hbar/2,\hbar} & A_{-\hbar/2,-\hbar/2} \end{pmatrix}.$$
And the the components of ##\hat{A} |\chi \rangle## are obviously given by ##\hat{A} \chi##.
 
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K