Spring Problem Involving Variables and Constants Only

Click For Summary
SUMMARY

The discussion centers on solving a physics problem involving a spring and the relationship between acceleration, force, and energy conservation. The user derived the spring constant formula as $$k = \frac{m(a+g)}{x}$$ and the displacement formula as $$x=\sqrt{\frac{2mgh}{k}}$$. However, the official solutions provided in the textbook are $$k = \frac{m(g+a)^2}{2gh}$$ and $$x = \frac{2gh}{g+a}$$. The main confusion arises from expressing the spring constant in terms of mass, acceleration, gravitational force, and height, rather than displacement.

PREREQUISITES
  • Understanding of Newton's second law of motion
  • Familiarity with concepts of conservative forces and energy conservation
  • Knowledge of spring mechanics and Hooke's law
  • Ability to manipulate algebraic equations involving multiple variables
NEXT STEPS
  • Study the derivation of spring constants in various contexts
  • Learn about energy conservation principles in mechanical systems
  • Explore advanced applications of Hooke's law in real-world scenarios
  • Investigate the relationship between acceleration and displacement in oscillatory motion
USEFUL FOR

Students of physics, educators teaching mechanics, and anyone interested in understanding the dynamics of spring systems and energy conservation principles.

Argonaut
Messages
45
Reaction score
24
Homework Statement
An experimental apparatus with mass ##m## is placed on a vertical spring of negligible mass and pushed down until the spring is compressed a distance ##x##. The apparatus is then released and reaches its maximum height at a distance ##h## above the point where it is released. The apparatus is not attached to the spring, and at its maximum height it is no longer in contact with the spring. The maximum magnitude of acceleration the apparatus can have without being damaged is ##a##, where ##a > g##. (a) What should the force constant of the spring be? (b) What distance ##x## must the spring be compressed initially?
Relevant Equations
$$F=ma$$
$$U_{\text{grav}}=mgh$$
$$U_{\text{el}}=\frac{1}{2}kx^2$$
Here is my attempt at the solution:

a) The apparatus may only experience acceleration ##a > g## while in contact with the spring. Since the spring exerts the greatest force when it is the most compressed, the apparatus will undergo the greatest acceleration at that point. So Newton's second law gives
$$\sum F = ma$$
$$kx-mg = ma$$
Therefore, the force constant of the spring should be $$k = \frac{m(a+g)}{x}$$.

b) There are only conservative forces in the system, so energy is conserved. Let point 1 (with ##y=0##) be the point where the apparatus is released and let point 2 be the point where it reaches height ##h##. Then
$$U_1=U_2$$
$$\frac{1}{2}kx^2 = mgh$$
Expressing ##x##
$$x=\sqrt{\frac{2mgh}{k}}$$

However, the official solution at the back of the book is
a)
$$k = \frac{m(g+a)^2}{2gh} $$
b)
$$x = \frac{2gh}{g+a} $$

I could 'reverse-engineer' both solutions. However, I don't understand how I should have known to express ##k## in terms of ##m##, ##a##, ##g## and ##h##, and not ##x##. Is it because of part b? Because essentially, both ##k## and ##x## are target variables and only the rest are known?
 
Physics news on Phys.org
Argonaut said:
$$k = \frac{m(a+g)}{x}$$ $$x=\sqrt{\frac{2mgh}{k}}$$
These look good. Can you combine them so that ##k## is expressed in terms of ##m,g, a## and ##h## instead of ##m, g, a## and ##x##?
 
  • Like
Likes   Reactions: Argonaut
Argonaut said:
how I should have known to express k in terms of m, a, g and h, and not x.
The question ought to have stated, in part a, that the answer should be in terms of m, g, a and h.
I suppose you might have noticed that your answers expressed x in terms of k, then k in terms of x, in such a way that each could be expressed without the other; and since x usually refers to an unknown to be found, and you know k is to be found…
 
  • Like
Likes   Reactions: Argonaut
TSny said:
These look good. Can you combine them so that ##k## is expressed in terms of ##m,g, a## and ##h## instead of ##m, g, a## and ##x##?
Yes and they give the book solution.
haruspex said:
The question ought to have stated, in part a, that the answer should be in terms of m, g, a and h.
I suppose you might have noticed that your answers expressed x in terms of k, then k in terms of x, in such a way that each could be expressed without the other; and since x usually refers to an unknown to be found, and you know k is to be found…
Got it.

Thanks, both. It makes more sense now that I typed it up and pondered some more.
 
  • Like
Likes   Reactions: TSny

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
7
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
24
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 17 ·
Replies
17
Views
1K