Spring Stiffness and Amplitude, not understanding

  • Thread starter SA_Eng
  • Start date
  • #1
1
0

Main Question or Discussion Point

Hi,

For an undamped mass, spring system subject to a harmonic force, the equation is: ma+kx=Fsin(ωt)
where a=d^2/dx^2

After solving the diff eqns, the steady state amplitude is:
X=(F/m)/(ω^2-ω0^2)
where ω is the frequency and ω0 is the natural frequency =sqrt(k/m)

according to the amplitude equation, the amplitude will increase if you increase the stiffness.

I am struggling to understand why this is true, as i understand it, the spring should be resisting the motion of the mass and hence the stiffer the spring the less it moves. Think about if you increase the stiffness to infinity, equivelant to placing the mass on a rigid floor, the displacement of the mass should surely reduce to zero. Am I missing something?

Anyone able to explain?
 

Answers and Replies

  • #2
Simon Bridge
Science Advisor
Homework Helper
17,848
1,645
according to the amplitude equation, the amplitude will increase if you increase the stiffness.
You mean this equation:
X=(F/m)/(ω^2-ω0^2)
... lets test this out ... a stiff spring would mean a higher k, so the relationship between ampltude and stiffness would be:

[tex]X=\frac{F}{m}\left ( \omega^2 - \frac{k}{m} \right )[/tex]

Initially it looks like the bigger k, the smaller the term in brackets due to the subtraction. However, it kinda looks like if k is very big, then [itex]\omega_0 > \omega[/itex] ... making the amplitude negative: what could this mean?

[later] Taking a further look:
http://en.wikipedia.org/wiki/Harmonic_oscillator#Sinusoidal_driving_force
... your system has a damping ratio of zero, which simplifies the solution.

Using this, their amplitude comes out different from yours.
I'd check your working.
 
Last edited:

Related Threads on Spring Stiffness and Amplitude, not understanding

  • Last Post
Replies
6
Views
719
  • Last Post
Replies
8
Views
14K
Replies
23
Views
6K
  • Last Post
Replies
0
Views
267
Replies
2
Views
5K
Replies
4
Views
2K
Replies
2
Views
1K
  • Last Post
Replies
1
Views
2K
Replies
0
Views
7K
Replies
1
Views
2K
Top