Square Root Of 2 Irrationality Proof

Click For Summary
SUMMARY

The discussion centers on the proof of the irrationality of the square root of 2, specifically the contradiction arising from the assumption that both s² and t² can contain even and odd numbers of 2's as prime factors simultaneously. The participants clarify that if s² equals 2t², then s² must be even, leading to the conclusion that s must also be even, which contradicts the assumption that t² contains an odd number of 2's. This contradiction confirms that the square root of 2 is irrational.

PREREQUISITES
  • Understanding of prime factorization
  • Familiarity with perfect squares
  • Basic knowledge of mathematical proofs
  • Concept of even and odd integers
NEXT STEPS
  • Study the properties of prime factorization in integers
  • Learn about mathematical proof techniques, particularly proof by contradiction
  • Explore the concept of irrational numbers and their properties
  • Investigate other proofs of irrationality, such as the proof for sqrt(3)
USEFUL FOR

Mathematics students, educators, and anyone interested in number theory or mathematical proofs, particularly those exploring concepts of irrationality.

moe darklight
Messages
409
Reaction score
0
Hi, I'm having trouble understanding some statements in this proof from my textbook:

"Thus, 2 = s^2/t^2 and 2t^2 = s^2. Since s^2 and t^2 are squares, s^2 contains an even number of 2's as prime factors (This is our Q statement), and t^2 contains an even number of 2's. But then t^2 contains an odd number of 2's as factors. Since 2t^2 = s^2, s^2 has an odd number of 2's. (This is the statement ~Q.) This is a contradiction, because s2 cannot have both an even and an odd number of 2's asfactors. We conclude that sqrt(2) is irrational."

Why does he assume that t^2 contains an odd number of 2's all of a sudden? ... and even if it did, s^2 would still be even, because it is equal to 2t^2, not t^2. :confused:
 
Physics news on Phys.org
moe darklight said:
Why does he assume that t^2 contains an odd number of 2's all of a sudden?
There is something funny in the phrasing; did you copy it exactly? Anyways, he didn't assume, because having an odd number of factors of 2 is a consequence of the previous observations.
 
yes I copied it exactly. ok, let me see if I get it:

t^2 must have an odd number of 2's because it equals s^2/2, and s^2 has an even number of twos (because any squared number has an even number of twos). but why not stop at that? isn't that a contradiction already? ... and the second statement still makes no sense to me, because if you multiply a number with an odd number of twos as factors (2t) by two, then you have an even number of twos, so why does he say s^2 is odd after 2t^2 = s^2?.

I assume, as usual, I'm overlooking something very obvious :biggrin:
 
moe darklight said:
yes I copied it exactly. ok, let me see if I get it:

t^2 must have an odd number of 2's because it equals s^2/2, and s^2 has an even number of twos (because any squared number has an even number of twos). but why not stop at that? isn't that a contradiction already?
Yes it is.
 
Well s^2 is an even number right? (since it equals 2t^2 and t is an integer therefore s^2 = 2k, for k \in Z ) but it's also a perfect square which means s is an even number I believe. Well if s is an even number then s^2 must contain an even number of 2s.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K