Stability condition for solving convection equation by FDM

Click For Summary
The discussion focuses on the stability conditions for solving the convection equation using Finite Difference methods. A stability criterion for the convection-diffusion equation is established, but participants express uncertainty about deriving a similar condition for the convection equation alone. It is noted that stability for diffusion is typically analyzed using Fourier series, complicating the situation when only convection is present. Numerical challenges in advecting fields without diffusion are highlighted, particularly over long time limits. The conversation concludes with a reference to an article that may provide relevant insights into passive advection.
nazmulislam
Messages
21
Reaction score
0
Hi,

I know, there is a stability condition for solving the Convection-Diffusion equation by Finite Difference explicit/implicit technique, which is \Delta t<=(\Delta x)^2/(2*D) for one-dimensional or \Delta t<=((\Delta x)^2+(\Delta y)^2)/(8*D) for two-dimensional problem, where D is the diffusion coefficient.
.
Is there any such condition for only the convection equation?

Thanks
 
Physics news on Phys.org
The stability criterion is dependent on your FD approximation of the laplacian. Have you tried calculating the stability conditions? I am not sure why the same method wouldn't work for the convection term. I have not done it for the convection though.
 
Thanks for your response. I am not sure how to calculate the stability condition. I have used the the formula \Delta t<=((\Delta x)^2+(\Delta y)^2)/(8*D) to make my program stable. But if there is no diffusion term,only convection term, how will I calculate the stability condition?

Thanks
 
After some thought I am not even sure you can do the calculation with the convection term, since the stability of the diffusion equation is calculated using a Fourier series. Unless the velocity is constant i suppose things will not work that well.
Further more as far as I remember just advecting a field is not so easy numerically due to various problems(at least not in the long time limit). What are you advecting by the way? An interface? This article discusses a bit about passiv advection
http://www.ias.ac.in/sadhana/Pdf2009Apr/271.pdf

I think it is nice enough.(and eq 2 might be what you are looking for).
 
Thanks.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K