MHB Statistics - Finding a relationship?

Click For Summary
The discussion focuses on establishing relationships between the means and standard deviations of two variables, y and x, defined by the equation y_j = ax_j + b. It is clarified that the mean of y, denoted as \(\overline{y}\), can be expressed as \(\overline{y} = a\overline{x} + b\). Additionally, the standard deviation of y, \(\sigma_y\), is found to be \(\sigma_y = a\sigma_x\). This indicates that the mean of y is a linear transformation of the mean of x, while the standard deviation of y is scaled by the constant a. Overall, the relationships derived align with statistical intuition regarding linear transformations.
shamieh
Messages
538
Reaction score
0
let a and b be constants and let $$y_j = ax_j+b$$ for $$j = 1,2...n$$. What are the relationships between the means of y and x, and the standard deviations of y and x?

I'm not sure what they are wanting here?
 
Mathematics news on Phys.org
Let's look at the means first...we know:

$$\overline{y}=\frac{1}{n}\sum_{j=1}^n\left(y_j\right)$$

Can you use the definition of $y_j$ and the properties of sums to obtain a relationship between $\overline{y}$ and $\overline{y}$?

Once you have the above, then look at:

$$\sigma_y=\sqrt{\frac{\sum\limits_{j=1}^n\left(y_j-\overline{y}\right)^2}{n}}$$

Replace $y_j$ and $\overline{y}$ with the expressions in terms of $x_j$ and $\overline{x}$, and you should be able to establish a relationship between $\sigma_y$ and $\sigma_x$. :D
 
would it be that they are both squared?
 
I don't really understand. This is my first statistic class. is ybar supposed to be the symbol for the mean?
 
MarkFL said:
Let's look at the means first...we know:

$$\overline{y}=\frac{1}{n}\sum_{j=1}^n\left(y_j\right)$$

Can you use the definition of $y_j$ and the properties of sums to obtain a relationship between $\overline{y}$ and $\overline{y}$?

Once you have the above, then look at:

$$\sigma_y=\sqrt{\frac{\sum\limits_{j=1}^n\left(y_j-\overline{y}\right)^2}{n}}$$

Replace $y_j$ and $\overline{y}$ with the expressions in terms of $x_j$ and $\overline{x}$, and you should be able to establish a relationship between $\sigma_y$ and $\sigma_x$. :D

Sorry for multiple posts. I think I see it now. the deviation of the $i^{th}$ observation, $y_i$, from the sample mean $\overline{y}$ is the difference between them $y_i - \overline{y}$
 
Yes, the bar over a variable represents the mean.

This is what I was suggesting you do:

$$\overline{y}=\frac{1}{n}\sum_{j=1}^n\left(y_j\right)=\frac{1}{n}\sum_{j=1}^n\left(ax_j+b\right)=a\frac{1}{n}\sum_{j=1}^n\left(x_j\right)+\frac{1}{n}bn=a\overline{x}+b$$

Now for the deviation:

$$\sigma_y=\sqrt{\frac{\sum\limits_{j=1}^n\left(y_j-\overline{y}\right)^2}{n}}=\sqrt{\frac{\sum\limits_{j=1}^n\left(ax_j+b-a\overline{x}-b\right)^2}{n}}=a\sqrt{\frac{\sum\limits_{j=1}^n\left(x_j-\overline{x}\right)^2}{n}}=a\sigma_x$$

Both of these results should agree nicely with intuition too. :D
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K