michonamona
- 120
- 0
Hello friends!
Given an estimator of the population mean:
\bar{Y}=\frac{\sum^{N}_{i=1}Y_{i}}{N}
The expected value of \bar{Y} is :
E(\bar{Y}) = \frac{1}{N}E(Y_{1})+\frac{1}{N}E(Y_{2})+\cdots+\frac{1}{N}E(Y_{N})=\mu where \mu is the population mean.
Therefore:
E(\bar{Y}) = \frac{1}{N}\mu+\frac{1}{N}\mu+\cdots+\frac{1}{N}\mu
My question is, why are E(Y_{1}), E(Y_{2}), E(Y_{N}) all equal to \mu?
Given an estimator of the population mean:
\bar{Y}=\frac{\sum^{N}_{i=1}Y_{i}}{N}
The expected value of \bar{Y} is :
E(\bar{Y}) = \frac{1}{N}E(Y_{1})+\frac{1}{N}E(Y_{2})+\cdots+\frac{1}{N}E(Y_{N})=\mu where \mu is the population mean.
Therefore:
E(\bar{Y}) = \frac{1}{N}\mu+\frac{1}{N}\mu+\cdots+\frac{1}{N}\mu
My question is, why are E(Y_{1}), E(Y_{2}), E(Y_{N}) all equal to \mu?
Last edited: