Steward e6 {7r11} Integral substitution

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Substitution
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x}$$ and the various substitution methods proposed to simplify it. Participants explore different approaches, substitutions, and transformations related to this integral, which involves techniques from calculus.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes a substitution $$u = x^2 - 1$$ leading to a transformed integral in terms of $$u$$.
  • Another participant suggests using the substitution $$x^{-1}=\sin(u)$$ to rewrite the integral, resulting in a different form of the integral to evaluate.
  • A later reply acknowledges the cleverness of the previous substitution and expresses surprise at the method used.
  • Further contributions refine the substitution process, suggesting additional transformations and adjustments to the integrand before proceeding with integration.
  • Another participant introduces a new substitution $$v = \sqrt{u}$$ to change the limits and form of the integral, leading to a different evaluation path.
  • Multiple participants present different evaluations of the integral, resulting in varying expressions for the final result, indicating different approaches to the problem.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a single method or final result for the integral. Multiple competing views and approaches remain throughout the discussion.

Contextual Notes

Some substitutions and transformations depend on specific assumptions about the integrand and the limits of integration. The discussion includes various mathematical steps that are not fully resolved, leaving some expressions and evaluations open to interpretation.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
🏄 🏄 🏄
 
Last edited:
Physics news on Phys.org
This is how I would work the problem:

$$I=\int_1^2 \frac{\sqrt{x^2-1}}{x}\,dx=\int_1^2 \sqrt{1-x^{-2}}\,dx$$

Let:

$$x^{-1}=\sin(u)\implies \,dx=-\frac{\cos(u)}{\sin^2(u)}\,du$$

And we now have:

$$I=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot^2(u)\,du=-\left[u+\cot(u)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}=\frac{\pi}{6}+\sqrt{3}-\frac{\pi}{2}-0=\sqrt{3}-\frac{\pi}{3}$$
 
I would have never thought of that..
Cool trick indeed!😃
 
karush said:
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
🏄 🏄 🏄

Your approach is fine, but you need to fiddle with the integrand first.

$\displaystyle \begin{align*} \int_1^2{\frac{\sqrt{x^2 - 1}}{x}\,\mathrm{d}x} &= \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } \end{align*}$

so let $\displaystyle \begin{align*} u = x^2 - 1 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$ with $\displaystyle \begin{align*} u(1) = 0 \end{align*}$ and $\displaystyle \begin{align*} u(2) = 3 \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } &= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \end{align*}$

Now how might you continue?
 
$\displaystyle \begin{align*} \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } &= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \end{align*} $

$\begin{align}\displaystyle
u& = \tan^2 \left({w}\right)&
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{t} \\
\end{align}$
Then
$\displaystyle
I= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \\
\implies \frac{1 }{2}\int_0^3
{ \frac{\sqrt{\tan^2 \left({w}\right)}}
{\left( \tan^2 \left({w}\right) + 1 \right) }\,\mathrm{d}w } \\
\implies \frac{1 }{2} \int_0^3 \frac{\tan\left({w}\right)}
{\sec^2 \left({w}\right)}
\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ dw $

Assume ok🐮
 
$$u=\tan^2(w),\quad du=2\tan(w)\sec^2(w)\,dw$$ (chain rule)

$$\int_0^3\dfrac{\sqrt u}{2(u+1)}\,du=\int_0^{\pi/3}\tan^2(w)\,dw=\int_0^{\pi/3}\sec^2(w)-1\,dw=\left[\tan(w)-w\right]_0^{\pi/3}=\sqrt{3}-\dfrac{\pi}{3}$$
 
Last edited:
My approach:

$\displaystyle \begin{align*} \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) } \,\mathrm{d}u } &= \int_0^3{ \frac{\left( \sqrt{u} \right) ^2 }{ \left[ \left( \sqrt{u} \right) ^2 + 1 \right] }\,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u} \end{align*}$

Now let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ noting that $\displaystyle \begin{align*} v(0) = 0 \end{align*}$ and $\displaystyle \begin{align*} v(3) = \sqrt{3} \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_0^3{ \frac{\left( \sqrt{u} \right) ^2}{\left[ \left( \sqrt{u} \right) ^2 + 1 \right] } \,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u } &= \int_0^{\sqrt{3}}{ \frac{v^2}{v^2 + 1}\,\mathrm{d}v } \\ &= \int_0^{\sqrt{3}}{ \left( 1 - \frac{1}{v^2 + 1} \right) \,\mathrm{d}v } \\ &= \left[ v - \arctan{\left( v \right) } \right] _0^{\sqrt{3}} \\ &= \left[ 0 - \arctan{(0)} \right] - \left[ \sqrt{3} - \arctan{ \left( \sqrt{3} \right) } \right] \\ &= \frac{\pi}{3} - \sqrt{3} \end{align*}$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K