MHB Steward e6 {7r11} Integral substitution

Click For Summary
The integral I = ∫_1^2 (√(x²-1)/x) dx evaluates to √3 + (1/3)π. Various substitution methods were discussed, including u = x² - 1 and u = tan²(w), leading to different forms of the integral. One approach transformed the integral into ∫_0^3 (√u/(2(u+1))) du, which simplifies further. Another method involved changing variables to express the integral in terms of trigonometric functions, ultimately yielding the same result. The discussion highlights the versatility of integral substitution techniques in solving complex integrals.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
🏄 🏄 🏄
 
Last edited:
Physics news on Phys.org
This is how I would work the problem:

$$I=\int_1^2 \frac{\sqrt{x^2-1}}{x}\,dx=\int_1^2 \sqrt{1-x^{-2}}\,dx$$

Let:

$$x^{-1}=\sin(u)\implies \,dx=-\frac{\cos(u)}{\sin^2(u)}\,du$$

And we now have:

$$I=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot^2(u)\,du=-\left[u+\cot(u)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}=\frac{\pi}{6}+\sqrt{3}-\frac{\pi}{2}-0=\sqrt{3}-\frac{\pi}{3}$$
 
I would have never thought of that..
Cool trick indeed!😃
 
karush said:
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
🏄 🏄 🏄

Your approach is fine, but you need to fiddle with the integrand first.

$\displaystyle \begin{align*} \int_1^2{\frac{\sqrt{x^2 - 1}}{x}\,\mathrm{d}x} &= \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } \end{align*}$

so let $\displaystyle \begin{align*} u = x^2 - 1 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$ with $\displaystyle \begin{align*} u(1) = 0 \end{align*}$ and $\displaystyle \begin{align*} u(2) = 3 \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } &= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \end{align*}$

Now how might you continue?
 
$\displaystyle \begin{align*} \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } &= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \end{align*} $

$\begin{align}\displaystyle
u& = \tan^2 \left({w}\right)&
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{t} \\
\end{align}$
Then
$\displaystyle
I= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \\
\implies \frac{1 }{2}\int_0^3
{ \frac{\sqrt{\tan^2 \left({w}\right)}}
{\left( \tan^2 \left({w}\right) + 1 \right) }\,\mathrm{d}w } \\
\implies \frac{1 }{2} \int_0^3 \frac{\tan\left({w}\right)}
{\sec^2 \left({w}\right)}
\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ dw $

Assume ok🐮
 
$$u=\tan^2(w),\quad du=2\tan(w)\sec^2(w)\,dw$$ (chain rule)

$$\int_0^3\dfrac{\sqrt u}{2(u+1)}\,du=\int_0^{\pi/3}\tan^2(w)\,dw=\int_0^{\pi/3}\sec^2(w)-1\,dw=\left[\tan(w)-w\right]_0^{\pi/3}=\sqrt{3}-\dfrac{\pi}{3}$$
 
Last edited:
My approach:

$\displaystyle \begin{align*} \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) } \,\mathrm{d}u } &= \int_0^3{ \frac{\left( \sqrt{u} \right) ^2 }{ \left[ \left( \sqrt{u} \right) ^2 + 1 \right] }\,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u} \end{align*}$

Now let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ noting that $\displaystyle \begin{align*} v(0) = 0 \end{align*}$ and $\displaystyle \begin{align*} v(3) = \sqrt{3} \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_0^3{ \frac{\left( \sqrt{u} \right) ^2}{\left[ \left( \sqrt{u} \right) ^2 + 1 \right] } \,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u } &= \int_0^{\sqrt{3}}{ \frac{v^2}{v^2 + 1}\,\mathrm{d}v } \\ &= \int_0^{\sqrt{3}}{ \left( 1 - \frac{1}{v^2 + 1} \right) \,\mathrm{d}v } \\ &= \left[ v - \arctan{\left( v \right) } \right] _0^{\sqrt{3}} \\ &= \left[ 0 - \arctan{(0)} \right] - \left[ \sqrt{3} - \arctan{ \left( \sqrt{3} \right) } \right] \\ &= \frac{\pi}{3} - \sqrt{3} \end{align*}$
 

Similar threads

Replies
2
Views
1K
Replies
6
Views
3K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K