Steward e6 {7r11} Integral substitution

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Substitution
Click For Summary
SUMMARY

The integral \( I = \int_1^2 \frac{\sqrt{x^2 - 1}}{x} \, dx \) evaluates to \( \sqrt{3} + \frac{1}{3}\pi \). Various substitution methods were discussed, including \( u = x^2 - 1 \) and \( u = \tan^2(w) \), leading to different forms of the integral. The final solution is confirmed through multiple approaches, demonstrating the effectiveness of trigonometric substitution in solving integrals involving square roots.

PREREQUISITES
  • Understanding of integral calculus, specifically definite integrals.
  • Familiarity with trigonometric identities and substitutions.
  • Knowledge of substitution techniques in integration.
  • Ability to manipulate algebraic expressions involving square roots.
NEXT STEPS
  • Study trigonometric substitution techniques in depth.
  • Learn about integration by parts and its applications.
  • Explore advanced integral calculus topics, such as improper integrals.
  • Practice solving integrals involving square roots and rational functions.
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, as well as anyone looking to enhance their skills in solving complex integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
🏄 🏄 🏄
 
Last edited:
Physics news on Phys.org
This is how I would work the problem:

$$I=\int_1^2 \frac{\sqrt{x^2-1}}{x}\,dx=\int_1^2 \sqrt{1-x^{-2}}\,dx$$

Let:

$$x^{-1}=\sin(u)\implies \,dx=-\frac{\cos(u)}{\sin^2(u)}\,du$$

And we now have:

$$I=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot^2(u)\,du=-\left[u+\cot(u)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}=\frac{\pi}{6}+\sqrt{3}-\frac{\pi}{2}-0=\sqrt{3}-\frac{\pi}{3}$$
 
I would have never thought of that..
Cool trick indeed!😃
 
karush said:
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
🏄 🏄 🏄

Your approach is fine, but you need to fiddle with the integrand first.

$\displaystyle \begin{align*} \int_1^2{\frac{\sqrt{x^2 - 1}}{x}\,\mathrm{d}x} &= \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } \end{align*}$

so let $\displaystyle \begin{align*} u = x^2 - 1 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$ with $\displaystyle \begin{align*} u(1) = 0 \end{align*}$ and $\displaystyle \begin{align*} u(2) = 3 \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } &= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \end{align*}$

Now how might you continue?
 
$\displaystyle \begin{align*} \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } &= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \end{align*} $

$\begin{align}\displaystyle
u& = \tan^2 \left({w}\right)&
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{t} \\
\end{align}$
Then
$\displaystyle
I= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \\
\implies \frac{1 }{2}\int_0^3
{ \frac{\sqrt{\tan^2 \left({w}\right)}}
{\left( \tan^2 \left({w}\right) + 1 \right) }\,\mathrm{d}w } \\
\implies \frac{1 }{2} \int_0^3 \frac{\tan\left({w}\right)}
{\sec^2 \left({w}\right)}
\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ dw $

Assume ok🐮
 
$$u=\tan^2(w),\quad du=2\tan(w)\sec^2(w)\,dw$$ (chain rule)

$$\int_0^3\dfrac{\sqrt u}{2(u+1)}\,du=\int_0^{\pi/3}\tan^2(w)\,dw=\int_0^{\pi/3}\sec^2(w)-1\,dw=\left[\tan(w)-w\right]_0^{\pi/3}=\sqrt{3}-\dfrac{\pi}{3}$$
 
Last edited:
My approach:

$\displaystyle \begin{align*} \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) } \,\mathrm{d}u } &= \int_0^3{ \frac{\left( \sqrt{u} \right) ^2 }{ \left[ \left( \sqrt{u} \right) ^2 + 1 \right] }\,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u} \end{align*}$

Now let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ noting that $\displaystyle \begin{align*} v(0) = 0 \end{align*}$ and $\displaystyle \begin{align*} v(3) = \sqrt{3} \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_0^3{ \frac{\left( \sqrt{u} \right) ^2}{\left[ \left( \sqrt{u} \right) ^2 + 1 \right] } \,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u } &= \int_0^{\sqrt{3}}{ \frac{v^2}{v^2 + 1}\,\mathrm{d}v } \\ &= \int_0^{\sqrt{3}}{ \left( 1 - \frac{1}{v^2 + 1} \right) \,\mathrm{d}v } \\ &= \left[ v - \arctan{\left( v \right) } \right] _0^{\sqrt{3}} \\ &= \left[ 0 - \arctan{(0)} \right] - \left[ \sqrt{3} - \arctan{ \left( \sqrt{3} \right) } \right] \\ &= \frac{\pi}{3} - \sqrt{3} \end{align*}$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K