Steward e6 7r33 rational integral

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Rational
Click For Summary
SUMMARY

The discussion focuses on solving the integral $$\displaystyle \int\frac{{x}^{2}}{\left(4-{x}^{2}\right)^{3/2}} \ dx$$ using various methods, including trigonometric substitution and integration by parts. Participants suggest using the substitution $x=2\sin(u)$, leading to the transformation of the integral into a more manageable form. The final result is expressed as $$I=\frac{x}{\sqrt{4-{x}^{2}}}-\arcsin\left({\frac{x}{2}}\right)+C$$, providing a clear solution to the integral.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric identities
  • Knowledge of integration techniques, including substitution and integration by parts
  • Ability to manipulate algebraic expressions involving square roots
NEXT STEPS
  • Study trigonometric substitution techniques in integral calculus
  • Learn about integration by parts and its applications
  • Explore advanced integral calculus topics, such as improper integrals
  • Practice solving integrals involving square roots and rational functions
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, as well as anyone seeking to enhance their skills in solving complex integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\displaystyle
\int\frac{{x}^{2}}{\left(4-{x}^{2}\right)^{3/2}} \ dx$$
$u=4-{x}^{2} \ \ \ du=-2x dx \ \ \ x=\sqrt{4-u}$
$$\displaystyle
\int\frac{4-u}{
\left(u\right)^{3/2}} -2 \sqrt{4-u}\ du$$

Stuck
 
Physics news on Phys.org
Try a trigonometric substitution instead. :)
 
karush said:
$$\displaystyle
\int\frac{{x}^{2}}{\left(4-{x}^{2}\right)^{3/2}} \ dx$$
$u=4-{x}^{2} \ \ \ du=-2x dx \ \ \ x=\sqrt{4-u}$
$$\displaystyle
\int\frac{4-u}{
\left(u\right)^{3/2}} -2 \sqrt{4-u}\ du$$

Stuck

Another option is to write $\displaystyle \begin{align*} \int{ \frac{x^2}{\left( 4 - x^2 \right) ^{\frac{3}{2}}}\,\mathrm{d}x } = -\frac{1}{2}\int{ x\,\left( -\frac{2\,x}{\left( 4 - x^2 \right) ^{\frac{3}{2}}} \right) \,\mathrm{d}x } \end{align*}$ and then apply integration by parts with $\displaystyle \begin{align*} u = x \end{align*}$ and $\displaystyle \begin{align*} \mathrm{d}v = -\frac{2\,x}{\left( 4 - x^2 \right) ^{\frac{3}{2}}}\,\mathrm{d}x \end{align*}$.
 
$$\displaystyle
I=\int\frac{{x}^{2}}{\left(4-{x}^{2}\right)^{3/2}} \ dx$$
$x=2\sin\left({u}\right)
\ \ \ dx=2\cos\left({u}\right) du
\ \ \ u=\arcsin\left({\frac{x}{2}}\right)$
$$\displaystyle
I=\int\frac{8\sin\left({u}\right)\cos\left({u}\right)}
{\left(4\left(1-\sin^2\left({u}\right)\right)\right)^{3/2}}\ du
\implies\int\tan^2\left({u}\right) \ du
\implies\tan\left({u}\right)-u+C$$
$\sin\left({u}\right)=\frac{x}{2}
\ \ \ \ \tan\left({u}\right)=\frac{x}{\sqrt{4-{x}^{2}}}$
$$I=\frac{x}{\sqrt{4-{x}^{2}}}-\arcsin\left({\frac{x}{2}}\right)+C$$
 
karush said:
$$\displaystyle
I=\int\frac{{x}^{2}}{\left(4-{x}^{2}\right)^{3/2}} \ dx$$
$x=2\sin\left({u}\right)
\ \ \ dx=2\cos\left({u}\right) du
\ \ \ u=\arcsin\left({\frac{x}{2}}\right)$
$$\displaystyle
I=\int\frac{8\sin\left({u}\right)\cos\left({u}\right)}
{\left(4\left(1-\sin^2\left({u}\right)\right)\right)^{3/2}}\ du$$

Should be $\displaystyle \begin{align*} \int{ \frac{8\sin^2{(u)}\cos{(u)}}{ \left\{ 4\,\left[ 1 - \sin^2{(u)} \right] \right\} ^{\frac{3}{2}} } \,\mathrm{d}u } \end{align*}$
 
$\tiny\text{Stewart e6 {7r33} } $
$$\displaystyle
I=\int\frac{{x}^{2}}{\left(4-{x}^{2}\right)^{3/2}} \ dx$$
$x=2\sin\left({u}\right)
\ \ \ dx=2\cos\left({u}\right) du
\ \ \ u=\arcsin\left({\frac{x}{2}}\right)$
$$\displaystyle
I=\int\frac{8\sin^2\left({u}\right)\cos\left({u}\right)}
{\left(4\left(1-\sin^2\left({u}\right)\right)\right)^{3/2}}\ du
\implies\int\tan^2\left({u}\right) \ du
\implies\tan\left({u}\right)-u+C$$
$\sin\left({u}\right)=\frac{x}{2}
\ \ \ \ \tan\left({u}\right)=\frac{x}{\sqrt{4-{x}^{2}}}$
$$I=\frac{x}{\sqrt{4-{x}^{2}}}-\arcsin\left({\frac{x}{2}}\right)+C$$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
955