cppIStough
- 24
- 2
- TL;DR Summary
- Ito's lemma and differentials: what's the difference?
Ito's formula states for some stochastic function F(S,t) where S evolves as dS = f(W,t)dt + g(W,t)dW and W is brownian motion:
$$dF = \partial_t F dt + \partial_xF dx + 1/2 \partial_{xx}F dt$$
So why question is, what does dF really mean here? I see in brownian motion we take $$dS = r dt + \sigma dW$$, but simulating this directly via monte carlo gives problems. Evidently the correct approach is to let F = log(S) and apply Ito's lemma. But why can't we just use $$dS = r dt + \sigma dW$$? I mean, it's an equation given, so why doesn't this work with monte carlo?
$$dF = \partial_t F dt + \partial_xF dx + 1/2 \partial_{xx}F dt$$
So why question is, what does dF really mean here? I see in brownian motion we take $$dS = r dt + \sigma dW$$, but simulating this directly via monte carlo gives problems. Evidently the correct approach is to let F = log(S) and apply Ito's lemma. But why can't we just use $$dS = r dt + \sigma dW$$? I mean, it's an equation given, so why doesn't this work with monte carlo?