I Stochastic calculus: Ito's lemma and differentials

  • I
  • Thread starter Thread starter cppIStough
  • Start date Start date
cppIStough
Messages
24
Reaction score
2
TL;DR Summary
Ito's lemma and differentials: what's the difference?
Ito's formula states for some stochastic function F(S,t) where S evolves as dS = f(W,t)dt + g(W,t)dW and W is brownian motion:
$$dF = \partial_t F dt + \partial_xF dx + 1/2 \partial_{xx}F dt$$
So why question is, what does dF really mean here? I see in brownian motion we take $$dS = r dt + \sigma dW$$, but simulating this directly via monte carlo gives problems. Evidently the correct approach is to let F = log(S) and apply Ito's lemma. But why can't we just use $$dS = r dt + \sigma dW$$? I mean, it's an equation given, so why doesn't this work with monte carlo?
 
Physics news on Phys.org
Did i put this in the wrong section?
 
Ito's Lemma tells you that the Ito Differential of an Ito process is itself an Ito process and describes the form of the latter. The Differential describes an infinitesimal change in the Stochastic process in question.
 
I think some of your formulae are maybe not what you intended. You refer to log(S) as though you are doing some Black Scholes type calculation.

W is the Brownian motion in your examples. Based on what you posted, this
dS_t = \mu dt + \sigma dW_t
means
S_t - S_0 = \mu * ( t - 0 ) + \sigma * ( W_t - W_0)

I put in the 0 and the W_0 just for explanation, but of course both are zero and can disappear.

If you meant the Black-Scholes thing, you include S in both the drift and volatility terms, and of course Monte Carlo works, but I don't know which part you are not clear on
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top