Straight wire inductance vs wire radius

AI Thread Summary
The discussion centers on the relationship between wire radius and inductance, highlighting that thinner wires exhibit lower inductance due to better coupling between current filaments. As wire diameter increases, the separation between these filaments grows, reducing their magnetic coupling. Rosa's derivation is noted to apply to DC currents, which complicates the intuitive understanding of this phenomenon. The concept of Maxwell's Geometric Mean Distance is mentioned as a challenging aspect of the discussion. Overall, the mutual inductance between current filaments is enhanced in thinner wires, leading to a clearer understanding of inductance behavior.
supernano
Messages
6
Reaction score
0
TL;DR Summary
I am looking for an intuitive explanation to why the inductance of a straight wire is larger for thinner wires.
I know that the whole topic of inductance in a straight wire is complicated (and has led to some heated discussions in this forum :smile:). I followed Rosa's derivation and can see that it leads to an inverse relation of the inductance to the wire radius, and from what could understand, the point is that with thinner wires there is more "space" between the edge of the wire and infinity to integrate across. Is that it, or does someone have a better intuitive explanation for this relationship?
 
Engineering news on Phys.org
Start by thinking of say 6 parallel filaments on the surface of the wire.

The filaments of current flowing on the thin wire are close together, so their magnetic fields have good coupling. On thicker wires, the individual filaments are more separated, so are less well coupled.

Then increase the number of filaments until you are thinking of a current sheet on the surface of a round wire.
 
Baluncore said:
Start by thinking of say 6 parallel filaments on the surface of the wire.

The filaments of current flowing on the thin wire are close together, so their magnetic fields have good coupling. On thicker wires, the individual filaments are more separated, so are less well coupled.

Then increase the number of filaments until you are thinking of a current sheet on the surface of a round wire.
Thanks @Baluncore, so I thought about this as well and it makes sense for high frequency signals where the skin depth is much smaller than the radius of the wire.. but from what I understand, Rosa's derivation applies to DC currents, which is what makes it less intuitive to me
 
supernano said:
.. but from what I understand, Rosa's derivation applies to DC currents, which is what makes it less intuitive to me
OK, so add a central filament, to the six peripheral filaments, making seven. Allocate one seventh of the sectional area to each filament. Place the filaments at the geometric mean of the sub-area they represent. The concept then fits the DC model, and the exact same logic follows. As the wire diameter is increased, the coupling between the filaments is reduced.
 
Baluncore's visualization of filaments of current within the wire leads us in the right direction. The mutual inductance between filaments increases as the wire diameter shrinks. (If the filament separation and total current in the wire are both held constant, then the current per filament increases, increasing the magnetic coupling.)
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top