tiredryan
- 50
- 0
In Batchelor's text (2000) on page 76, the stream function is defined as
<br /> \psi - \psi_0 = \int\left(u dy - v dx\right)<br />
where \psi_0 is a constant
Now I begin with a simple function for u where
<br /> u = x^3<br />
From mass conservation,
<br /> \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0<br />
<br /> 3x^2 + \frac{\partial v}{\partial y} = 0<br />
<br /> v = -3x^2y<br />
Plugging this into the equation for the stream function
<br /> \psi - \psi_0 = \int\left(u dy - v dx\right)<br />
<br /> \psi - \psi_0 = \int\left(x^3 dy + 3x^2y dx\right)<br />
<br /> \psi - \psi_0 = \int\left(x^3 dy\right) + \int\left(3x^2y dx\right)<br />
<br /> \psi - \psi_0 = x^3y + x^3y + C<br />
<br /> \psi - \psi_0 = 2x^3y + C<br />
Now using the equations for u and v,
<br /> u = \frac{\partial \psi}{\partial y}<br />
<br /> u = \frac{\partial (2x^3y + C - \psi_0)}{\partial y}<br />
<br /> u = 2x^3<br />
<br /> v = -\frac{\partial \psi}{\partial x}<br />
<br /> v = -\frac{\partial (2x^3y + C - \psi_0)}{\partial x}<br />
<br /> v = -6x^2y<br />
I seems like the initial v=-3x^2y and u=x^3 are off from the recalculated v = -6x^2y and u = 2x^3 by a factor of two. Am I doing something wrong? Thanks.
<br /> \psi - \psi_0 = \int\left(u dy - v dx\right)<br />
where \psi_0 is a constant
Now I begin with a simple function for u where
<br /> u = x^3<br />
From mass conservation,
<br /> \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0<br />
<br /> 3x^2 + \frac{\partial v}{\partial y} = 0<br />
<br /> v = -3x^2y<br />
Plugging this into the equation for the stream function
<br /> \psi - \psi_0 = \int\left(u dy - v dx\right)<br />
<br /> \psi - \psi_0 = \int\left(x^3 dy + 3x^2y dx\right)<br />
<br /> \psi - \psi_0 = \int\left(x^3 dy\right) + \int\left(3x^2y dx\right)<br />
<br /> \psi - \psi_0 = x^3y + x^3y + C<br />
<br /> \psi - \psi_0 = 2x^3y + C<br />
Now using the equations for u and v,
<br /> u = \frac{\partial \psi}{\partial y}<br />
<br /> u = \frac{\partial (2x^3y + C - \psi_0)}{\partial y}<br />
<br /> u = 2x^3<br />
<br /> v = -\frac{\partial \psi}{\partial x}<br />
<br /> v = -\frac{\partial (2x^3y + C - \psi_0)}{\partial x}<br />
<br /> v = -6x^2y<br />
I seems like the initial v=-3x^2y and u=x^3 are off from the recalculated v = -6x^2y and u = 2x^3 by a factor of two. Am I doing something wrong? Thanks.