Lie algebras exist independently of representations. Often, physicists are concerned with real Lie algebras, e.g., ##\mathfrak{su}\left(2\right)##.
Suppose we have a real Lie algebra ##\mathcal{L}##, and let ##\left\{ x_i \right\}## be a basis for the Lie algebra. Since any element of the Lie algebra is a a real linear combination of the basis elements, each commutator is real linear combination of the basis elements. In particular, the commutators of the basis elements are linear real combinations of the basis elements, i.e.,
$$\left[ x_i , x_j\right] = c^k_{jk} x_k .$$
A representation of the real Lie algebra ##\mathcal{L}## on a complex vector space ##V## is a mapping ##\rho## from ##\mathcal{L}## into the set of linear operators on ##V##, i.e., each Lie algebra element is associated (represented) by an operator on ##V##. This association is linear and preserves commutators. Consequently, the structure constants are real and independent of representation.
In more detail: Let each Lie algebra basis element ##x_i## be represented by operator ##X_i##, i.e., ##X_i = \rho \left( x_i \right)##. Then,
$$\begin{align}
\left[ X_i , X_j \right] &= \left[\rho\left(x_i \right), \rho\left(x_j \right)\right]\\
&= \rho\left( \left[ x_i , x_j \right] \right)\\
&= \rho\left( c^k_{jk} x_k \right)\\
&= c^k_{jk} X_k
\end{align}$$
So, the same structure constants for the real Lie algebra ##\mathcal{L}## appear in all representations of ##\mathcal{L}##. Fixing the structure constants for a Lie algebra ##\mathcal{L}## fixes the same real structure constants in all representations.
Changing the basis for ##\mathcal{L}## will change the structure constants, i.e., ##\left[ x'_i , x'_j\right] = c'^k_{jk} x'_k ##, but the structure constants will be the new real ##c'^k_{jk}## in all representations.
It is possible, at the representation level, to consider operators ##Y_m## that are complex linear combinations of the generators ##X_i##, and then ##\left[ Y_i , Y_j\right] = d^k_{jk} x'_k ## can have complex ##d^k_{jk}##, but I would not call these structure constants of the original Lie algebra, as there exist no corresponding elements ##y_i## of the real Lie algebra ##\mathcal{L}## with ##\left[ y_i , y_j\right] = d^k_{jk} y_k ##.