aleksbooker1
- 5
- 0
Here's the problem I was given:
Find the area of the surface generated by revolving the curve
$$x=\frac{e^y + e^{-y} }{2}$$
from 0 $$\leq$$ y $$\leq$$ ln(2) about the y-axis.
I tried the normal route first...
g(y) = x = $$\frac{1}{2} (e^y + e^{-y})$$
g'(y) = dx/dy = $$\frac{1}{2} (e^y - e^{-y}) $$
S = $$\int 2\pi \frac{1}{2} (e^y + e^{-y}) \sqrt{1+(e^y - e^{-y})^2} dy$$
S = $$\pi \int (e^y + e^{-y}) \sqrt{\frac{1}{4}e^{2y}+\frac{1}{2}+\frac{1}{4}e^{-2y} } dy$$
S = $$\pi \int (e^y + e^{-y}) \sqrt{\frac{1}{4} (e^y+e^{-y})^2} dy$$
S = $$\pi \int (e^y + e^{-y}) \frac {1}{2} (e^y+e^{-y}) dy$$
But then I got stuck here...
S = $$\frac{1}{2} \pi \int (e^y + e^{-y})^2 dy $$
How should I proceed? Thanks in advance.
Find the area of the surface generated by revolving the curve
$$x=\frac{e^y + e^{-y} }{2}$$
from 0 $$\leq$$ y $$\leq$$ ln(2) about the y-axis.
I tried the normal route first...
g(y) = x = $$\frac{1}{2} (e^y + e^{-y})$$
g'(y) = dx/dy = $$\frac{1}{2} (e^y - e^{-y}) $$
S = $$\int 2\pi \frac{1}{2} (e^y + e^{-y}) \sqrt{1+(e^y - e^{-y})^2} dy$$
S = $$\pi \int (e^y + e^{-y}) \sqrt{\frac{1}{4}e^{2y}+\frac{1}{2}+\frac{1}{4}e^{-2y} } dy$$
S = $$\pi \int (e^y + e^{-y}) \sqrt{\frac{1}{4} (e^y+e^{-y})^2} dy$$
S = $$\pi \int (e^y + e^{-y}) \frac {1}{2} (e^y+e^{-y}) dy$$
But then I got stuck here...
S = $$\frac{1}{2} \pi \int (e^y + e^{-y})^2 dy $$
How should I proceed? Thanks in advance.