How can we compute the Galois group of a subgroup of a splitting field?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Group Subgroup
Click For Summary
SUMMARY

The discussion centers on computing the Galois group of a subgroup of a splitting field defined by the polynomial \(f(x) = x^6 - x^3 - 1\) over \(\mathbb{Q}\). The roots of this polynomial include \(\rho\) and its conjugates, with the splitting field expressed as \(L = \mathbb{Q}[\rho, \omega]\), where \(\omega\) is a primitive cube root of unity. The Galois group \(\mathcal{G}(L/\mathbb{Q})\) is isomorphic to the dihedral group \(D_6\), and the intermediate extension \(E\) has been analyzed to determine its Galois group \(\mathcal{G}(L/E)\) and the degree \([E:\mathbb{Q}]\).

PREREQUISITES
  • Understanding of Galois Theory and its applications.
  • Familiarity with polynomial irreducibility and roots in \(\mathbb{Q}[x]\).
  • Knowledge of group theory, specifically dihedral groups and their properties.
  • Ability to manipulate and compute with algebraic expressions involving roots and automorphisms.
NEXT STEPS
  • Study the properties of dihedral groups, particularly \(D_6\), to understand its structure and automorphisms.
  • Learn about the computation of Galois groups for polynomials using the Fundamental Theorem of Galois Theory.
  • Explore the relationship between minimal polynomials and field extensions in Galois theory.
  • Investigate examples of splitting fields and their Galois groups to solidify understanding of the concepts discussed.
USEFUL FOR

Mathematicians, particularly those specializing in algebra and number theory, graduate students studying Galois theory, and anyone interested in the properties of polynomial roots and field extensions.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\rho=\sqrt[3]{\frac{1+\sqrt{5}}{2}}$.
We have that $\rho$ is a root of $f(x)=x^6-x^3-1\in \mathbb{Q}[x]$, that is irreducible over $\mathbb{Q}$.
We have that all the roots of $f(x)$ are $\rho, \omega\rho, \omega^2\rho, -\frac{1}{\rho}, -\frac{\omega}{\rho}, -\frac{\omega^2}{\rho}$, where $\omega$ is the cubic root of $1$, $\omega\neq 1$ ($\omega^2+\omega+1=0$).
We have that the splitting field of $f(x)$ over $\mathbb{Q}$ is $L=\mathbb{Q}[\rho, \omega]$.
There are automorphisms $\sigma, \tau\in \mathcal{G}(L/\mathbb{Q})$ such that $\sigma (\rho)=-\frac{\omega}{\rho}, \sigma (\omega)=\omega^2, \tau (\rho)\rho, \tau (\omega)=\omega^2$. We have that the order of $\sigma$ is $6$ and the order of $\tau$ is $2$ and that $\tau\sigma=\sigma^5\tau$. So, $\mathcal{G}(L/\mathbb{Q})\cong D_6$.

Let $E$ be an intermediate extension of $L/\mathbb{Q}$ with $E\neq \mathbb{Q}, L$.
($\mathbb{Q}\subset E\subset L$)

We have the following:
  1. The generator of $E$ is $\omega$, the minimal polynomial of the generator is $x^2+x+1$ and $\mathcal{G}(L/E)=\langle \sigma^2, \sigma\tau\rangle$.

    How have we found that $\mathcal{G}(L/E)=\langle \sigma^2, \sigma\tau\rangle$ ? (Wondering)
    One of the automorphisms of $\mathcal{G}(L/E)$ is the identity $id_L$.

    It holds that $[E:\mathbb{Q}]=\deg (x^2+x+1)=2$, right? (Wondering)
  2. The generator of $E$ is $\theta=1+\rho-\rho^4+\omega(\rho+\rho^2-\rho^4)$, the minimal polynomial of the generator is $x^3-3x^2-1$ and $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$.
    How have we found that $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$ ? (Wondering)
    Also how can we compute $[E:\mathbb{Q}]$ without using the minimal polynomial? Maybe with the Theorem of Galois Theory that $\mathcal{G}(E/\mathbb{Q})\cong \mathcal{G}(L/E)/ \mathcal{G}(L/\mathbb{Q})$ and so $[E:\mathbb{Q}]=|\mathcal{G}(E/\mathbb{Q})|=\frac{|\mathcal{G}(L/E)|}{|\mathcal{G}(L/\mathbb{Q})|}$ ?
    We have that $|\mathcal{G}(L/\mathbb{Q})|=12$ and to find $|\mathcal{G}(L/E)|$ we have to find all the elements, or not?
    $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle=\{\sigma^3, \sigma^6=id, \sigma^2\tau, (\sigma^2\tau)(\sigma^2\tau)=\dots=id\}=\{id, \sigma^3, \sigma^2\tau\}$
    So, $|\mathcal{G}(L/E)|=3$ and so $[E:\mathbb{Q}]=\frac{3}{12}=\frac{1}{4}$ ? That is wrong, isn't it? (Wondering)
 
Physics news on Phys.org
At the second case since $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$, it must hold that $\sigma^3 (1-\rho^2+\omega(-\rho-\rho^2+\rho^4))=1-\rho^2+\omega(-\rho-\rho^2+\rho^4)$ and $\sigma\tau (1-\rho^2+\omega(-\rho-\rho^2+\rho^4))=1-\rho^2+\omega(-\rho-\rho^2+\rho^4)$.

We have that and $\sigma^3(\rho)=\rho^2-\rho^5$, $\sigma^3(\omega)=\omega^2$ and $\sigma^2\tau(\rho)=\omega\rho$, $\sigma^2\tau(\omega)=\omega$, right?

I tried to prove the above relations:

$$\begin{align*}\sigma^3\left (1+\rho^2+\omega(\rho+\rho^2-\rho^4)\right )&=1+\left (\sigma^3 (\rho)\right )^2+\sigma^3(\omega)\left (\sigma^3 (\rho)+\left ( \sigma^3(\rho)\right) ^2-\left (\sigma^3(\rho)\right )^4\right ) \\ &=1+\left (\rho^2-\rho^5\right )^2+\omega^2\left ((\rho^2-\rho^5)+\left ( \rho^2-\rho^5\right )^2-\left (\rho^2-\rho^5\right )^4\right ) \\ & =1+\left (\rho^2-\rho^5\right )^2+\omega^2(\rho^2-\rho^5)\left (1+\left ( \rho^2-\rho^5\right )-\left (\rho^2-\rho^5\right )^3\right )
\\ \sigma^2\tau \left (1+\rho^2+\omega(\rho+\rho^2-\rho^4)\right )&=1+\left (\sigma^2\tau (\rho)\right )^2+\sigma^2\tau (\omega)\left (\sigma^2\tau (\rho)+\left ( \sigma^2\tau (\rho)\right) ^2-\left (\sigma^2\tau (\rho)\right )^4\right ) \\ &=1+\left (\omega\rho\right )^2+\omega\left (\omega\rho+\left (\omega\rho\right) ^2-\left (\omega\rho\right )^4\right ) \\ &=1+\omega^2\rho^2+\omega\left (\omega\rho+\omega^2\rho^2-\omega^4\rho^4\right ) \\ &=1+\omega^2\rho^2+\omega\left (\omega\rho+\omega^2\rho^2-\omega\rho^4\right ) \\ &= 1+\omega^2\rho^2+\omega^2\rho+\omega^3\rho^2-\omega^2\rho^4 \\ &=1+\omega^2\rho^2+\omega^2\rho+\rho^2-\omega^2\rho^4 \\ &=1+\rho^2+\omega^2 (\rho^2+\rho-\rho^4)\end{align*} $$

How could we continue at the first relation to get the desired result? (Wondering)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
12K
  • · Replies 3 ·
Replies
3
Views
414
  • · Replies 4 ·
Replies
4
Views
587
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
907
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K