Ted123
- 428
- 0
Homework Statement
The Attempt at a Solution
< denotes a subgroup and \triangleleft denotes a normal subgroup throughout.
Can anyone tell me what I've done right/wrong? I've posted all my working below:
To prove that A<G, I can say that:
A (2n+1) \times (2n+1) matrix is invertible if and only if it has non-zero determinant so A \subset G.
Furthermore, A is non-empty since I_{2n+1} \in A since \text{det}(I_{2n+1})=1.
To prove that CD^{-1} \in A for all C,D \in A is this correct?:
Let C,D \in A. Then \text{det}(C)=\text{det}(D)=1. Now by the properties of determinants,
\displaystyle \text{det}(CD^{-1}) = \text{det}(C)\text{det}(D^{-1}) = \frac{\text{det}(C)}{\text{det}(D)} = \frac{1}{1} = 1 .
So CD^{-1} \in A and A<G.
Now suppose P \in G and Q \in A
Then \text{det}(PQP^{-1}) = \text{det}(P)\text{det}(Q)\text{det}(P^{-1}) = \text{det}(P)\text{det}(Q)\text{det}(P)^{-1} = \text{det}(Q) = 1 .
Therefore A \triangleleft G .
Now B \neq \emptyset since I\in B (set u=1) .
If U = \begin{bmatrix}u & 0 & \ldots & 0 \\ 0 & u & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots\\0 & 0 &\ldots & u\end{bmatrix} \in B and if V = \begin{bmatrix}v & 0 & \ldots & 0 \\ 0 & v & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots\\0 & 0 &\ldots & v\end{bmatrix} \in B
Then UV^{-1} = \begin{bmatrix}uv^{-1} & 0 & \ldots & 0 \\ 0 & uv^{-1} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots\\0 & 0 &\ldots & uv^{-1}\end{bmatrix} \in B
so that B < G .
If P\in G is a (2n+1) \times (2n+1) matrix of the same size of U with arbitrary entries then UP=PU and it follows that PUP^{-1} = U . Hence B \triangleleft G .
Now since \text{det}(U) = u^{2n+1} and u\neq 0 it follows that if U \in A then u=1 .
Therefore A \cap B = \{1\} .
Let \text{det}(P) = r \neq 0 .
Then P = [The matrix P with every element divided by \sqrt{r} ] \begin{bmatrix}\sqrt{r} & 0 & \ldots & 0 \\ 0 & \sqrt{r} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots\\0 & 0 &\ldots & \sqrt{r} \end{bmatrix} = QU (say)
We have Q \in A for \displaystyle \text{det}(Q)= \frac{\text{det}(P)}{r} = 1 and U \in B.
Therefore G=AB and G is the internal direct product of A and B.