How to get general solution via Green's function?

  • #1
psie
122
12
Homework Statement
Find a fundamental solution of the equation ##x''-x=0##. Solve using this the equation ##x''-x=e^t\sin{t}##.
Relevant Equations
The definition of a fundamental solution is given in theorem below.
I'll start with a characterization of the Green's function as a fundamental solution to a differential operator. This theorem is given in Ordinary Differential Equations by Andersson and Böiers.

Theorem. Let $$L(t,\lambda)=\lambda^n+a_{n-1}(t)\lambda^{n-1}+\ldots+a_1(t)\lambda+a_0(t)\quad\text{and }D=\frac{d}{dt}.\tag1$$ Denote by ##E(t,\tau)## the uniquely determined solution ##u(t)## of the initial value problem
\begin{align}
&L(t,D)u=0 \tag2\\
&u(\tau)=u'(\tau)=\ldots=u^{(n-2)}(\tau)=0,\quad u^{(n-1)}(\tau)=1. \tag3
\end{align}
Then
$$y(t)=\int_{t_0}^t E(t,\tau)g(\tau)d\tau\tag4$$
is the solution of the problem
\begin{align}
&L(t,D)y=g(t) \tag5\\
&y(t_0)=y'(t_0)=\ldots=y^{(n-1)}(t_0)=0. \tag6
\end{align}
##E(t,\tau)## is known as the fundamental solution to the differential operator ##L(t,D)##, also known as Green's function.

Now, consider the equation ##x''-x=e^t\sin{t}##. The homogeneous solution is ##x_h(t)=Ae^t+Be^{-t}##. To obtain ##E(t,\tau)##, note that ##x_h'(t)=Ae^t-Be^{-t}##. According to ##(3)##, ##x_h(\tau)=x_h'(\tau)=0##, so we have two equations and two unknowns. Solving this system, we obtain ##A=\frac{e^{-\tau}}{2}## and ##B=-\frac{e^\tau}{2}##, so $$E(t,\tau)=\frac12(e^{t-\tau}-e^{\tau-t})=\sinh{(t-\tau)}.$$

Here is where I'm stuck. ##(4)## seems to depend on an initial value ##t_0##, which I don't have. Moreover, I'm a little unsure whether or not ##(4)## is the general solution to ##L(t,D)y=g(t)## or simply a particular solution. I'm looking to obtain the general solution of ##x''-x=e^t\sin{t}## using Green's function, i.e. ##E(t,\tau)##. Grateful for any help.
 
Physics news on Phys.org
  • #2
Let's begin by rewriting your general theorem as it applies to your specific ##2^{nd}##-order ODE, using the same equation numbers as in the theorem. Your Green's function ##E\left(t,\tau\right)## must satisfy:
$$\frac{d^{2}E\left(t,\tau\right)}{dt^{2}}-E\left(t,\tau\right)=0\tag{2}$$with
$$E\left(\tau,\tau\right)=0,\quad\left.\frac{dE\left(t,\tau\right)}{dt}\right|_{t=\tau}=1\tag{3}$$In your post, you solve this system for the unique result:$$E\left(t,\tau\right)=\sinh\left(t-\tau\right)$$which is clearly correct. Turning then to eq.##(4)## of the theorem, you write:
psie said:
Here is where I'm stuck. ##(4)## seems to depend on an initial value ##t_{0}##, which I don't have.
True, we don't have a specific value for ##t_{0}##, just like we don't have a specific value for ##t##, so we just carry them both along. We make this manifest by altering the left of eq.##(4)## to make it clear that the ultimate solution ##x## can depend on both of the variables ##t## and ##t_{0}##:
$$x\left(t,t_{0}\right)=\intop_{t_{0}}^{t}E\left(t,\tau\right)g\left(\tau\right)d\tau=\intop_{t_{0}}^{t}\sinh\left(t-\tau\right)e^{\tau}\sin\left(\tau\right)d\tau\tag{4}$$So now you've arrived at the most tedious step: performing the integral on the right of ##(4)##. It's elementary, in that it boils down to integrating products of exponentials, but the final answer is a sum over several terms involving trig functions and exponentials. (I "cheated" and used Wolfram Mathematica!). Once you've derived the explicit expression for ##x(t,t_{0})##, you can directly verify that it does indeed solve the last two equations of the theorem:
$$\frac{d^{2}x\left(t,t_{0}\right)}{dt^{2}}-x\left(t,t_{0}\right)=g\left(t\right)=e^{t}\sin\left(t\right)\tag{5}$$and:
$$x\left(t_{0},t_{0}\right)=\left.\frac{dx\left(t,t_{0}\right)}{dt}\right|_{t=t_{0}}=0\tag{6}$$You next note:
psie said:
I'm a little unsure whether or not ##(4)## is the general solution...
Well, the general solution ##x## to a ##2^{nd}##-order ODE must involve two arbitrary constants of integration, which can be used to set arbitrary initial conditions on ##x,x'## at a particular point. So solution ##(4)## cannot be general since by eq.##(6)## it has the very specific initial values ##x=x'=0## at ##t=t_{0}##. But this is easily remedied: simply add to ##x## your arbitrary solution ##x_{h}(t)## of the homogeneous equation ##x_{h}''-x_{h}=0## to get the general solution ##x_{g}##:$$x_{g}\left(t,t_{0}\right)\equiv x\left(t,t_{0}\right)+x_{h}\left(t\right)=x\left(t,t_{0}\right)+c_{1}e^{t}+c_{2}e^{-t}\qquad(c_{1},c_{2}\text{ arbitrary constants})$$##x_{g}## still satisfies the inhomogeneous equation ##(5)##, but the initial conditions ##(6)## generalize to:$$x_{g}\left(t_{0},t_{0}\right)=c_{1}e^{t_{0}}+c_{2}e^{-t_{0}},\quad\left.\frac{dx_{g}\left(t,t_{0}\right)}{dt}\right|_{t=t_{0}}=c_{1}e^{t_{0}}-c_{2}e^{-t_{0}}$$Evidently, by appropriately choosing ##c_{1},c_{2}## you have the freedom to set any desired initial conditions on ##x_G## and ##x_G'## at ##t=t_{0}##, as is required for the general solution. Hence, you can express the general solution of your problem in terms of the Green's function as:$$x_{g}\left(t,t_{0}\right)=\intop_{t_{0}}^{t}\sinh\left(t-\tau\right)e^{\tau}\sin\left(\tau\right)d\tau+c_{1}e^{t}+c_{2}e^{-t}$$
 
Last edited:
  • Like
Likes DeBangis21, psie and topsquark

1. What is Green's function and how is it used to find the general solution?

Green's function is a mathematical tool used to solve differential equations. It represents the response of a system to a point source or "delta function" input. To find the general solution using Green's function, the differential equation is first converted into an integral equation using the Green's function. The general solution is then obtained by solving this integral equation.

2. What types of differential equations can be solved using Green's function?

Green's function can be used to solve linear, homogeneous differential equations with constant coefficients. It is commonly used in physics and engineering to solve problems involving wave propagation, heat transfer, and potential fields.

3. Is Green's function unique for a given differential equation?

No, Green's function is not unique. For a given differential equation, there can be multiple Green's functions that satisfy the same boundary conditions. However, the general solution obtained using any of these Green's functions will be the same.

4. Can Green's function be used to solve non-linear differential equations?

No, Green's function can only be used to solve linear differential equations. Non-linear differential equations require different methods for finding solutions.

5. Are there any limitations to using Green's function to find the general solution?

Yes, Green's function can only be used for linear, homogeneous differential equations with constant coefficients. It also requires the boundary conditions to be specified. In some cases, finding the Green's function can be a difficult or impossible task, making it impractical to use for finding the general solution.

Similar threads

  • Differential Equations
Replies
1
Views
755
Replies
4
Views
753
  • Differential Equations
Replies
5
Views
655
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
9
Views
1K
  • Calculus and Beyond Homework Help
Replies
16
Views
566
  • Calculus and Beyond Homework Help
Replies
2
Views
2K
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
8
Views
1K
  • Differential Equations
Replies
1
Views
667
Back
Top