MHB Subgroups of the dihedral group D6

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Dihedral Group
Click For Summary
The discussion focuses on the subgroups of the dihedral group D6, detailing those of orders 2, 3, 4, and 6. It is noted that there are no subgroups of order 4 due to the absence of elements of that order, confirming that the only possible subgroup structure is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Participants clarify that some subgroups, like $\langle\sigma^2\rangle$ and $\langle\sigma^4\rangle$, are indeed the same, as are $\langle\sigma\rangle$ and $\langle\sigma^5\rangle$. The conversation also touches on the construction of a subgroup diagram using LaTeX, with discussions on the accuracy and completeness of the diagram. Overall, the thread emphasizes subgroup identification and diagrammatic representation within the context of D6.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to make the diagram for the dihedral group $D_6$:

Subroups of order $2$ : $\langle \tau \rangle$, $\langle \sigma\tau\rangle$, $\langle\sigma^2\tau\rangle$, $\langle\sigma^3\tau\rangle$, $\langle\sigma^4\tau\rangle$, $\langle\sigma^5\tau\rangle$, $\langle\sigma^3\rangle$

Subgroups of order $3$ : $\langle\sigma^2\rangle$, $\langle\sigma^4\rangle$

Subgroups of order $6$ : $\langle \sigma \rangle$, $\langle \sigma^5\rangle$, $\langle\sigma^2, \tau\rangle$, $\langle\sigma^2, \sigma\tau\rangle$

Are there more for each order? (Wondering)

The subgroups of order $4$ are those that are isomorphic to $\mathbb{Z}_4$ or to $\mathbb{Z}_2\times\mathbb{Z}_2$, right? (Wondering)
There are no elements of order $4$, so there are no subgroups of order $\mathbb{Z}_4$, right? (Wondering)
Are the subgroups that are isomorphic to $\mathbb{Z}_2\times\mathbb{Z}_2$ the $\langle a,b\rangle$, for all $a, b$ the elemennt of order $2$
($a,b \in \{\tau, \sigma\tau, \sigma^2\tau , \sigma^3\tau , \sigma^4\tau, \sigma^5\tau , \sigma^3\}$ ) ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

I want to make the diagram for the dihedral group $D_6$:

Subroups of order $2$ : $\langle \tau \rangle$, $\langle \sigma\tau\rangle$, $\langle\sigma^2\tau\rangle$, $\langle\sigma^3\tau\rangle$, $\langle\sigma^4\tau\rangle$, $\langle\sigma^5\tau\rangle$, $\langle\sigma^3\rangle$

Subgroups of order $3$ : $\langle\sigma^2\rangle$, $\langle\sigma^4\rangle$

Subgroups of order $6$ : $\langle \sigma \rangle$, $\langle \sigma^5\rangle$, $\langle\sigma^2, \tau\rangle$, $\langle\sigma^2, \sigma\tau\rangle$

Are there more for each order? (Wondering)

Hey mathmari! (Smile)

I don't think there are more of order 2, 3, and 6.

Oh, and aren't $\langle\sigma^2\rangle$ and $\langle\sigma^4\rangle$ the same sub group?
And $\langle \sigma \rangle$ and $\langle \sigma^5\rangle$ as well? (Wondering)
The subgroups of order $4$ are those that are isomorphic to $\mathbb{Z}_4$ or to $\mathbb{Z}_2\times\mathbb{Z}_2$, right? (Wondering)
There are no elements of order $4$, so there are no subgroups of order $\mathbb{Z}_4$, right? (Wondering)
Are the subgroups that are isomorphic to $\mathbb{Z}_2\times\mathbb{Z}_2$ the $\langle a,b\rangle$, for all $a, b$ the elemennt of order $2$
($a,b \in \{\tau, \sigma\tau, \sigma^2\tau , \sigma^3\tau , \sigma^4\tau, \sigma^5\tau , \sigma^3\}$ ) ? (Wondering)

Yes and yes.
But suppose we pick $a= \tau, b=\sigma\tau$.
Doesn't that mean that $\sigma\tau\cdot \tau = \sigma$ is in the sub group as well?
But then, the whole group is generated! :eek:
 
I like Serena said:
Oh, and aren't $\langle\sigma^2\rangle$ and $\langle\sigma^4\rangle$ the same sub group?
And $\langle \sigma \rangle$ and $\langle \sigma^5\rangle$ as well? (Wondering)

Ah ok... (Thinking)
I like Serena said:
But suppose we pick $a= \tau, b=\sigma\tau$.
Doesn't that mean that $\sigma\tau\cdot \tau = \sigma$ is in the sub group as well?
But then, the whole group is generated! :eek:

Are the subgroups of order $4$ the following?
$\langle \sigma^3, \sigma\tau\rangle, \langle \sigma^3, \sigma^2\tau\rangle, \langle \sigma^3, \sigma^3\tau\rangle$
(Wondering)
Do you know what command I have to use in Latex to make the diagram? (Wondering)
 
Last edited by a moderator:
Yep.

You mean something like
[TIKZ][-stealth]
\node (id) at (0,0) {$\{1\}$};
\node (s1) at (-2,1) {$\langle\tau\rangle$};
\draw (id) to (s1);
[/TIKZ]
(Wondering)
 
I like Serena said:
You mean something like
[TIKZ]
\node (id) at (0,0) {$\{1\}$};
\node (s1) at (-2,1) {$\langle\sigma\rangle$};
\draw (id) to (s1);
[/TIKZ]
(Wondering)

It doesn't appear anything to me:

View attachment 6231

(Wondering)
 

Attachments

  • latex.PNG
    latex.PNG
    1.7 KB · Views: 148
mathmari said:
It doesn't appear anything to me:

(Wondering)

Something went wrong. I'll have to figure it out when I get home. (Wait)
 
I like Serena said:
Something went wrong. I'll have to figure it out when I get home. (Wait)

Ok! (Wait)
 
Using the following part:

Code:
  \node (one) at (0,2) {$\text{\foreignlanguage{english}{id}}$};
  \node (2a) at (-6,0) {$\langle\tau\rangle$};
  \node (2b) at (-4,0) {$\langle\sigma^3\rangle$}; 
  \node (2c) at (-2,0) {$\langle\sigma\tau\rangle$}; 
  \node (2d) at (0,0) {$\langle\sigma^2\tau\rangle$};
  \node (2e) at (2,0) {$\langle\sigma^3\tau\rangle$};
  \node (2f) at (4,0) {$\langle\sigma^4\tau\rangle$};
  \node (2g) at (6,0) {$\langle\sigma^5\tau\rangle$};
  \node (3) at (-5.5,-2) {$\langle\sigma^2\rangle=\langle\sigma^4\rangle$}; 
  \node (4a) at (0.5, -4) {$\langle\sigma^3,\sigma\tau\rangle$}; 
  \node (4b) at (3,-4) {$\langle\sigma^3,\sigma^2\tau\rangle$}; 
  \node (4c) at (5.5,-4) {$\langle\sigma^3,\sigma^3\tau\rangle$}; 
  \node (6a) at (-5, -6.5) {$\langle\sigma\rangle=\langle\sigma^5\rangle$}; 
  \node (6b) at (-2.5, -6.5) {$\langle\sigma^2,\tau\rangle$}; 
  \node (6c) at (3.5, -6.5) {$\langle \sigma^2,\sigma\tau\rangle$}; 
  \node (G) at (0, -8) {$D_6$}; 
  \draw (one) -- (2a) -- (4c) -- (G); 
  \draw (one) -- (2b) -- (4a) -- (G); 
  \draw (2b) -- (4b) -- (G); 
  \draw (2b) -- (4c); 
  \draw (one) -- (2c) -- (4a); 
  \draw (one) -- (2d) -- (4b); 
  \draw (one) -- (2e) -- (4c); 
  \draw (one) -- (2f) -- (4a); 
  \draw (one) -- (2g) -- (4b); 
  \draw (one) -- (3) -- (6a) -- (G); 
  \draw (2b) -- (6a); 
  \draw (3) -- (6b) -- (G); 
  \draw (3) -- (6c) -- (G);

I get the following result:

View attachment 6232

Is this correct? (Wondering)

Or have I forgotten an arrow? (Wondering)
 

Attachments

  • D6.PNG
    D6.PNG
    14.2 KB · Views: 202
It works again! (Happy)

\begin{tikzpicture}
%preamble \usepackage{amsmath}
%preamble \usetikzlibrary{shadows}
[very thick,
3dnode/.style 2 args={%
circle,
minimum size=1.2cm,
top color=#1!40!white,
bottom color=#1!60!black,
draw=#1!90!black,
thick,
general shadow={%
shadow xshift=.4ex, shadow yshift=-.4ex,
opacity=.5, fill=black!50,
}
}]
\node
at (-8,2) {Order \ 1};
\node[3dnode={orange}{}] (one) at (0,2) {$\text{id}$};
\node
at (-8,0) {Order \ 2};
\node[3dnode={green}{}] (2a) at (-6,0) {$\langle\tau\rangle$};
\node[3dnode={green}{}] (2b) at (-4,0) {$\langle\sigma^3\rangle$};
\node[3dnode={green}{}] (2c) at (-2,0) {$\langle\sigma\tau\rangle$};
\node[3dnode={green}{}] (2d) at (0,0) {$\langle\sigma^2\tau\rangle$};
\node[3dnode={green}{}] (2e) at (2,0) {$\langle\sigma^3\tau\rangle$};
\node[3dnode={green}{}] (2f) at (4,0) {$\langle\sigma^4\tau\rangle$};
\node[3dnode={green}{}] (2g) at (6,0) {$\langle\sigma^5\tau\rangle$};
\node
at (-8,-2) {Order \ 3};
\node[3dnode={green}{}] (3) at (-5.5,-2) {$\langle\sigma^2\rangle=\langle\sigma^4\rangle$};
\node
at (-8,-4) {Order \ 4};
\node[3dnode={green}{}] (4a) at (0.5, -4) {$\langle\sigma^3,\sigma\tau\rangle$};
\node[3dnode={green}{}] (4b) at (3,-4) {$\langle\sigma^3,\sigma^2\tau\rangle$};
\node[3dnode={green}{}] (4c) at (5.5,-4) {$\langle\sigma^3,\sigma^3\tau\rangle$};
\node
at (-8,-6.5) {Order \ 6};
\node[3dnode={green}{}] (6a) at (-5, -6.5) {$\langle\sigma\rangle=\langle\sigma^5\rangle$};
\node[3dnode={green}{}] (6b) at (-2.5, -6.5) {$\langle\sigma^2,\tau\rangle$};
\node[3dnode={green}{}] (6c) at (3.5, -6.5) {$\langle \sigma^2,\sigma\tau\rangle$};
\node
at (-8,-8) {Order 12};
\node[3dnode={blue}{},text=white] (G) at (0, -8) {$D_6$};
\draw (one) -- (2a) -- (4c) -- (G);
\draw (one) -- (2b) -- (4a) -- (G);
\draw (2b) -- (4b) -- (G);
\draw (2b) -- (4c);
\draw (one) -- (2c) -- (4a);
\draw (one) -- (2d) -- (4b);
\draw (one) -- (2e) -- (4c);
\draw (one) -- (2f) -- (4a);
\draw (one) -- (2g) -- (4b);
\draw (one) -- (3) -- (6a) -- (G);
\draw (2b) -- (6a);
\draw (3) -- (6b) -- (G);
\draw (3) -- (6c) -- (G);
\end{tikzpicture}

Shouldn't there be a couple more arrows to the subgroups of order 6? (Wondering)​
 
Last edited:
  • #10
Shouldn't there be an arrow from $\langle\tau\rangle$ to $\langle \sigma^2,\tau\rangle$? (Wondering)
 

Similar threads

Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K