Subset of the domain for the transformation to be invariant

Click For Summary

Homework Help Overview

The discussion revolves around identifying the subset of the domain for a transformation matrix that is invariant. The transformation is a reflection at the y-axis, and participants explore the implications of this transformation in the context of set notation and invariant points and lines.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants discuss various representations of invariant points and lines, questioning how to express these in set notation. There is confusion about whether to represent the invariant lines as a single set or multiple sets, given the infinite nature of the lines defined by ##y = c##.

Discussion Status

Some participants have offered different ways to express the invariant sets, while others have pointed out the complexity of the question due to the existence of multiple invariant sets. There is an ongoing exploration of the definitions and distinctions between invariant points, lines, and subspaces.

Contextual Notes

Participants note that the question may be problematic as it asks for a single subset when multiple invariant sets exist. There is also mention of the need for clarity regarding the terminology used, such as "subspace" and "invariant sets."

songoku
Messages
2,509
Reaction score
393
Homework Statement
Given transformation matrix M : ##\mathbb R^2 \rightarrow \mathbb R^2##
$$\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}
$$

Describe the subset of the domain for the transformation to be invariant
Relevant Equations
##M \begin{pmatrix}
x\\
y
\end{pmatrix}
= \begin{pmatrix}
x\\
y
\end{pmatrix}##
I found that the
a) invariant points are all points on y-axis
b) invariant lines are y-axis and ##y=c## where ##c## is real

I am confused what the final answer should be. How to state the answer as "subset of domain"? Is it:
$$\{x,y \in \mathbb R^2 | (0, y) , x = 0, y=c\}$$

Thanks
 
Physics news on Phys.org
The invariant points are the y-axis. You can express this in set notation a number of ways. Perhaps the simplest is:
$$\{(x,y) \in \mathbb R^2 | x = 0\}$$PS That's for part a).
 
Last edited:
  • Like
Likes   Reactions: songoku
songoku said:
Homework Statement:: Given transformation matrix M : ##\mathbb R^2 \rightarrow \mathbb R^2##
$$\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}
$$

Describe the subset of the domain for the transformation to be invariant
Relevant Equations:: ##M \begin{pmatrix}
x\\
y
\end{pmatrix}
= \begin{pmatrix}
x\\
y
\end{pmatrix}##

I found that the
a) invariant points are all points on y-axis
b) invariant lines are y-axis and ##y=c## where ##c## is real

I am confused what the final answer should be. How to state the answer as "subset of domain"? Is it:
$$\{x,y \in \mathbb R^2 | (0, y) , x = 0, y=c\}$$

Thanks
You are right that there are two different types of sets, the y-axis, and all horizontal lines because the transformation is a reflection at the y-axis. So the question is problematic as it asks for one set when there are infinitely many. There are even four types because the entire space is invariant, too. And the word subspace normally does not exclude equality. And then there is the zero.

My answer would be
$$
\{(0,0)\}\, , \,\{(x,y)\in \mathbb{R}^2\,|\,x=0\} \, , \,\{(x,y)\in \mathbb{R}^2\,|\,y=c\}\;(c\in \mathbb{R})\, , \,\mathbb{R}^2.
$$
 
  • Like
Likes   Reactions: songoku
PeroK said:
The invariant points are the y-axis. You can express this in set notation a number of ways. Perhaps the simplest is:
$$\{(x,y) \in \mathbb R^2 | x = 0\}$$
Invariant points (eigen vectors) and invariant subspaces are two different things.
 
fresh_42 said:
You are right that there are two different types of sets, the y-axis, and all horizontal lines because the transformation is a reflection at the y-axis. So the question is problematic as it asks for one set when there are infinitely many. There are even four types because the entire space is invariant, too. And the word subspace normally does not exclude equality. And then there is the zero.

My answer would be
$$
\{(0,0)\}\, , \,\{(x,y)\in \mathbb{R}^2\,|\,x=0\} \, , \,\{(x,y)\in \mathbb{R}^2\,|\,y=c\}\;(c\in \mathbb{R})\, , \,\mathbb{R}^2.
$$
This I don't understand. For part b), unless we use a formalism for sets of lines, I wouldn't use set notation. I'd just say "the set of lines in the plane defined by ##y = c##, where ##c \in \mathbb R##; and the y-axis".
 
PeroK said:
This I don't understand. For part b), unless we use a formalism for sets of lines, I wouldn't use set notation. I'd just say "the set of lines in the plane defined by ##y = c##, where ##c \in \mathbb R##; and the y-axis".
Yes, my fault. Only ##\{(x,0)\}## is an invariant subspace as ##\{(x,c)\}## are no subspaces, only invariant sets, But invariant subsets are myriads more, every figure that coincides with its mirror image. The horizontal lines are only affine subspaces.
 
Thank you very much PeroK and fresh_42
 

Similar threads

Replies
3
Views
1K
Replies
24
Views
3K
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
869
Replies
20
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K