Hello everybody.(adsbygoogle = window.adsbygoogle || []).push({});

Consider

$$\frac{\partial}{\partial t}f(x) + ax\frac{\partial }{\partial x}f(x) = b x^2\frac{\partial^2}{\partial x^2}f(x)$$

This is the equation (19) of https://www.researchgate.net/profil...52d685b2a73eb000000.pdf?disableCoverPage=true

They make the substitution $$y=ln(x)$$ and obtain

$$ \frac{\partial}{\partial t}f(x) + a\frac{\partial }{\partial y}f(y) = b \frac{\partial^2}{\partial y^2}f(y)$$

My problem in second order term: what I would do is

$$ bx^2\frac{\partial^2}{\partial x^2}f(x)=bx^2\frac{\partial }{\partial x}(\frac{\partial y}{\partial x}\frac{\partial }{\partial y} f(y))=bx^2\frac{\partial }{\partial x}(\frac{1}{x}\frac{\partial }{\partial y} f(y))=bx^2\frac{\partial y}{\partial x} \frac{\partial }{\partial y}(\frac{1}{x}\frac{\partial }{\partial y} f(y)) = bx\frac{\partial}{\partial y}(\frac{1}{x}\frac{\partial }{\partial y} f(y)) = b\frac{\partial^2}{\partial y^2}f(x) + bx(\frac{\partial }{\partial y}f(x))(\frac{\partial }{\partial y}\frac{1}{x}) $$

So I obtain the term $$b\frac{\partial^2}{\partial y^2}f(x) $$ but I also have $$bx(\frac{\partial }{\partial y}f(x))(\frac{\partial }{\partial x}\frac{1}{x}) $$

which is not 0 being

$$\frac{\partial }{\partial y}\frac{1}{x} = \frac{\partial }{\partial y}e^{-y} = -e^{-y}$$

so that I'm left with a term

$$bx(\frac{\partial }{\partial y}f(x))(\frac{\partial }{\partial x}\frac{1}{x}) = be^y(\frac{\partial}{\partial y}f(y))(-e^{-y})=-b\frac{\partial }{\partial y}f(y)$$

What is my mistake?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Substitution in partial differential equation

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**