MHB Sum of 100 Terms: Prove At Least 2 Numbers Equal

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum Terms
AI Thread Summary
The discussion revolves around a mathematical problem involving 100 natural numbers, where the sum of their reciprocals of square roots equals 20. Participants are tasked with proving that at least two of these numbers must be equal. A hint is requested to aid in solving the problem, highlighting the challenge's complexity. The original post contains a typo that was later corrected, clarifying the equation to be solved. The conversation emphasizes the importance of rigorous mathematical reasoning in addressing the problem.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The natural numbers $a_1,\,a_2,\,\cdots,\,a_{100}$ are such that

$\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_1}}+\cdots+\dfrac{1}{\sqrt{a_1}}=20$.

Prove that at least two of the numbers are equal.
 
Mathematics news on Phys.org
Hi, anemone
I´d expected the sum to be: $\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}$
- or am I wrong??
 
anemone said:
The natural numbers $a_1,\,a_2,\,\cdots,\,a_{100}$ are such that

$\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_1}}+\cdots+\dfrac{1}{\sqrt{a_1}}=20$.

Prove that at least two of the numbers are equal.

Ops...typo...again...sorry folks!:o

The problem should read:

The natural numbers $a_1,\,a_2,\,\cdots,\,a_{100}$ are such that

$\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\cdots+\dfrac{1}{\sqrt{a_{100}}}=20$.

Prove that at least two of the numbers are equal.
 
A hint is requested :o
 
lfdahl said:
A hint is requested :o

Hello MHB!

Something irritating has happened to my laptop and it seems like the folder that contains all challenging problems that I have collected from all over the world is ... gone...(Sweating):mad:(Worried)

I will post back for any update on my effort to save the situation and for this challenge problem, I am afraid I may need some decent time to look for its source so I could post a hint based on the suggested solution I found online...sorry folks!
 
anemone said:
Ops...typo...again...sorry folks!:o

The problem should read:

The natural numbers $a_1,\,a_2,\,\cdots,\,a_{100}$ are such that

$\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\cdots+\dfrac{1}{\sqrt{a_{100}}}=20$.

Prove that at least two of the numbers are equal.
let $a_1\neq a_2\neq a_3\neq ----------\neq a_{100}----(1)$
$$S=\dfrac {1}{\sqrt 1}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+\dfrac{1}{\sqrt{5}}+----+\dfrac{1}{\sqrt{100}}
<1+\int_{1}^{100}\dfrac{dx}{\sqrt{x}}=1+18=19--(2)$$
but we are given $S=20---(3)$
a contradiction between (2) and (3)
(1) is impossible
so at least two of the numbers are equal
 
Last edited:
Albert said:
let $a_1\neq a_2\neq a_3\neq ----------\neq a_{100}----(1)$
$$S=\dfrac {1}{\sqrt 1}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+\dfrac{1}{\sqrt{5}}+----+\dfrac{1}{\sqrt{100}}
<1+\int_{1}^{100}\dfrac{dx}{\sqrt{x}}=1+18=19--(2)$$
but we are given $S=20---(3)$
a contradiction between (2) and (3)
(1) is impossible
so at least two of the numbers are equal

Very well done Albert!(Cool)
 

Similar threads

Back
Top