MHB Sum of basis elements form a basis

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $V$ be a vector space. Let $b_1, \ldots , b_n\in V$ and let $\displaystyle{b_k':=\sum_{i=1}^kb_i}$ for $k=1, \ldots , n$.

I want to show that $\{b_1, \ldots , b_n\}$ is a basis of $V$ iff $\{b_1', \ldots , b_n'\}$ is a basis of $V$. I have done the following:

Let $B:=\{b_1, \ldots , b_n\}$ be a basis of $V$.

That means that the set is linearly independent and $|B|=\dim (V)$, right?

We want to show that the set $B':=\{b_1', \ldots , b_n'\}$ is also linearly independent and $|B'|=\dim (V)$, don't we?

Since the elements of $B$ is linearly independent, we have that $c_1b_1+c_2b_2+\ldots c_nb_n=0 \Rightarrow c_1=c_2=\ldots =c_n=0$.

We have that \begin{align*}\gamma_1b_1'+\gamma_2b_2'+\ldots \gamma_nb_n'=0 &\Rightarrow \gamma_1\sum_{i=1}^1b_i+\gamma_2\sum_{i=1}^2b_i+\ldots \gamma_n\sum_{i=1}^nb_i=0 \\ & \Rightarrow b_1\sum_{i=1}^n\gamma_i+b_2\sum_{i=2}^n\gamma_i+\ldots +b_n\sum_{i=n}^n\gamma_i=0 \\ & \Rightarrow \sum_{i=n}^1\gamma_i=\sum_{i=n}^2\gamma_i=\ldots =\sum_{i=n}^n\gamma_i=0\\ & \Rightarrow \gamma_1=\gamma_2=\ldots =\gamma_n=0\end{align*}

Since the set $B'$ has $n$ elements as the set $B$ it follows that $|B'|=\dim (V)$.

Therefore $B'$ is a basis of $V$.

Is at this direction everything correct? (Wondering) For the other direction:

Let $B'=\{b_1', \ldots , b_n'\}$ be a basis of $V$.

That means that the set is linearly independent and $|B'|=\dim (V)$.

We want to show that the set $B:=\{b_1, \ldots , b_n\}$ is also linearly independent and $|B|=\dim (V)$.

Since the elements of $B'$ is linearly independent, we have that $\gamma_1b_1'+\gamma_2b_2'+\ldots \gamma_nb_n'=0 \Rightarrow \gamma_1=\gamma_2=\ldots =\gamma_n=0$.

How do we get from $c_1b_1+c_2b_2+\ldots c_nb_n=0 $ the linear combination with the elements $b_i'$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Is at this direction everything correct? (Wondering)

Hey mathmari!

Yep. It's all correct so far. (Bow)

mathmari said:
Let $B'=\{b_1', \ldots , b_n'\}$ be a basis of $V$.

That means that the set is linearly independent and $|B'|=\dim (V)$.

We want to show that the set $B:=\{b_1, \ldots , b_n\}$ is also linearly independent and $|B|=\dim (V)$.

Since the elements of $B'$ is linearly independent, we have that $\gamma_1b_1'+\gamma_2b_2'+\ldots \gamma_nb_n'=0 \Rightarrow \gamma_1=\gamma_2=\ldots =\gamma_n=0$.

How do we get from $c_1b_1+c_2b_2+\ldots c_nb_n=0 $ the linear combination with the elements $b_i'$ ?

How about substituting the definitions of $b_i'$ and continue in a similar fashion as the other direction? (Wondering)
 
Klaas van Aarsen said:
How about substituting the definitions of $b_i'$ and continue in a similar fashion as the other direction? (Wondering)

We have the following:
\begin{align*}\gamma_1b_1'+\gamma_2b_2'+\ldots \gamma_nb_n'=0 &\Rightarrow \gamma_1\sum_{i=1}^1b_i+\gamma_2\sum_{i=1}^2b_i+\ldots \gamma_n\sum_{i=1}^nb_i=0 \\ & \Rightarrow b_1\sum_{i=1}^n\gamma_i+b_2\sum_{i=2}^n\gamma_i+\ldots +b_n\sum_{i=n}^n\gamma_i=0 \\ & \Rightarrow \sum_{i=n}^1\gamma_i=\sum_{i=n}^2\gamma_i=\ldots =\sum_{i=n}^n\gamma_i=0 \ \text{ since } \gamma_1=\gamma_2=\ldots =\gamma_n=0\end{align*}
From that it follows that the elements of $B$ are linearly independent.

Is that correct? (Wondering)

Since the set $B$ has $n$ elements as the set $B'$ it follows that $|B|=\dim (V)$ and so $B$ is also a basis. We use here the fact that if a set is linearly independent and has the same number of elements than a basis which means that it spans the vector space then that set is also a basis, right? (Wondering)
 
Yep. All correct. (Nod)
 
Klaas van Aarsen said:
Yep. All correct. (Nod)

Great! Thanks a lot! (Mmm)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
6
Views
1K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K