MHB Sum of Factorial Series: Find the Answer!

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the exact value of the series $$\frac{1}{4!}+\frac{4!}{8!}+\frac{8!}{12!}+\frac{12!}{16!}+\cdots\cdots$$
 
Mathematics news on Phys.org
anemone said:
Find the exact value of the series $$\frac{1}{4!}+\frac{4!}{8!}+\frac{8!}{12!}+\frac{12!}{16!}+\cdots\cdots$$

The series can be written as...

$\displaystyle S = \frac{1}{4!}\ \{\frac{1}{\binom{4}{4}} + \frac{1}{\binom{8}{4}} + \frac{1}{\binom{12}{4}} + ...\}\ (1)$

... and now You remember the nice formula...

$\displaystyle \frac{1}{\binom{n}{k}} = k\ \int_{0}^{1} (1-x)^{k-1}\ x^{n-k}\ dx\ (2)$

... that for k=4 and n= 4 n becomes...

$\displaystyle \frac{1}{\binom{4 n}{4}} = 4\ \int_{0}^{1} (1-x)^{3}\ x^{4\ (n-1)}\ dx\ (3)$

... so that is...

$\displaystyle \sum_{n=1}^{\infty} \frac{1}{\binom{4 n}{4}} = 4\ \int_{0}^{1} \frac{(1-x)^{3}}{1-x^{4}}\ dx = \ln 64 - \pi\ (4)$

... and finally...

$\displaystyle S = \frac{\ln 64 - \pi}{4!} = .0423871...\ (5)$

Kind regards

$\chi$ $\sigma$
 
Hi chisigma,

Thanks so much for participating and your answer is for sure an elegant one!(Nerd)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top