MHB Sum of Series: Let $x$ with x^{2011}=1 & x$\ne$1

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Series Sum
Click For Summary
The sum of the series $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$ for a complex number $x$ satisfying $x^{2011}=1$ and $x\ne1$ simplifies to 1004. The derivation involves recognizing patterns in the series and using properties of complex numbers, particularly the relationships between powers of $x$. Key steps include pairing terms and applying geometric series formulas. The final result confirms that the sum converges to a specific integer value. Thus, the computed sum is $S=1004$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.

Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.
 
Mathematics news on Phys.org
Let us first get rid of the doubled exponent on the numerator:

\[ \frac{x^{2n}}{x^n-1} = x^n \cdot \left(\frac{x^n}{x^n-1}\right) = x^n \cdot \left(1 + \frac{1}{x^n-1}\right)\]

So that we have

\[\sum_{k=1}^{2010}\frac{x^{2k}}{x^k-1}=\sum_{k=1}^{2010}x^k + \sum_{k=1}^{2010}\frac{x^k}{x^k-1}\]

and here we have $\sum_{k=1}^{2010}x^k = \frac{x-x^{2011}}{1-x} = \frac{x-1}{1-x}=-1$, hence we will concentrate on the term $\sum_{k=1}^{2010}\frac{x^k}{x^k-1}$.

Let us write $S = \sum_{k=1}^{2010}\frac{x^k}{x^k-1}$.

Note that $x^{2010} = x^{-1}$, thus $\frac{x^{2010} }{x^{2010} - 1} = \frac{x^{-1}}{x^{-1}-1} = \frac{1}{1-x} = - \frac{1}{x-1}$, and, in general we have $x^{2010-k} = x^{-k-1}$ thus
\[\frac{x^{2010-k}}{x^{2010-k}-1} = \frac{x^{-k-1}}{x^{-k-1}-1}=-\frac{1}{x^{k+1}-1}\]

Hence
\[S = \sum_{k=1}^{2010} \frac{x^k}{x^k-1} = \sum_{k=0}^{2009} \frac{x^{2010-k}}{x^{2010-k}-1} = - \sum_{k=0}^{2009}\frac{1}{x^{k+1}-1}= - \sum_{k=1}^{2010}\frac{1}{x^k-1}\]

so that
\[2S = \sum_{k=1}^{2010} \frac{x^k}{x^k - 1} - \sum_{k=1}^{2010}\frac{1}{x^k-1} = \sum_{k=1}^{2010}\frac{x^k-1}{x^k-1}=2010\]

thus $S = 1005$ and so
\[\sum_{k=1}^{2010}\frac{x^{2k}}{x^k-1}=1004\]
 
Last edited:
Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.

Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.

Hi PaulRS, thanks for participating and yes, your answer is correct.

My solution:

First, let $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.

We're told that $$x^{2011}=1$$. This implies

$$x^{4022}=1\;\rightarrow x^2(x^{4020})=1$$ or $$x^{4020}=\frac{1}{x^2}$$

From $$x^{4020}=\frac{1}{x^2}$$ we get

$$x^{2010}=\frac{1}{x}$$ and

$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$

Now, if we collect the very first and last term from the given series, we see that
$$
\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}=\frac{x^2}{x-1}+\frac{\frac{1}{x^2}}{\frac{1}{x}-1}=\frac{x^2}{x-1}-\frac{1}{x(x-1)}=\frac{x^3-1}{x(x-1)}=\frac{(x-1)(x^2+x+1)}{x(x-1)}=x+1+\frac{1}{x}$$

By continue collecting the terms in this fashion we see that

$$S=\left(\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}\right)+\left(\frac{x^4}{x^2-1}+\frac{x^{4018}}{x^{2009}-1}\right)+\cdots+\left(\frac{x^{2010}}{x^{1005}-1}+\frac{x^{2012}}{x^{1006}-1}\right)$$

$$S=\left(x+1+\frac{1}{x}\right)+\left(x^2+1+\frac{1}{x^2}\right)+\cdots+\left(x^{1005}+1+\frac{1}{x^{1005}}\right)$$

$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( \frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}} \right)$$

And since $$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$, we have $$x^{\frac{1}{2}}=\frac{1}{x^{1005}}$$; $$x(x^{\frac{1}{2}})=\frac{1}{x^{1004}}$$; $$x^2(x^{\frac{1}{2}})=\frac{1}{x^{1003}}$$ and so on and so forth...

$$\frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}}$$ becomes $$x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004})$$ and

$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)$$

$$S=1005+\left(1+x+x^2+\cdots+x^{1004}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)-1+x^{1005}$$

$$S=1004+(1+x+x^2+\cdots+x^{1004})(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$(*)

I hope I don't confuse you, the reader at this point because I can tell my method is tedious and messy and also, quite confusing...:(

Notice that

$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$

$$x^{1005}-1=\frac{1}{x^{\frac{1}{2}}}-1=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}} \right)$$

and since $x \ne 1$,

$$\frac{x^{1005}-1}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x-1)} \right)$$

$$\frac{(x-1)(x^{1004}+x^{1003}+\cdots+1)}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}-1)(x^{\frac{1}{2}}+1)} \right)$$

$$x^{1004}+x^{1003}+\cdots+1=-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)$$

Now, substitute this into the equation (*) we get

$$S=1004-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$

$\therefore S=1004$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K