Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.
Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.
Hi PaulRS, thanks for participating and yes, your answer is correct.
My solution:
First, let $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.
We're told that $$x^{2011}=1$$. This implies
$$x^{4022}=1\;\rightarrow x^2(x^{4020})=1$$ or $$x^{4020}=\frac{1}{x^2}$$
From $$x^{4020}=\frac{1}{x^2}$$ we get
$$x^{2010}=\frac{1}{x}$$ and
$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$
Now, if we collect the very first and last term from the given series, we see that
$$
\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}=\frac{x^2}{x-1}+\frac{\frac{1}{x^2}}{\frac{1}{x}-1}=\frac{x^2}{x-1}-\frac{1}{x(x-1)}=\frac{x^3-1}{x(x-1)}=\frac{(x-1)(x^2+x+1)}{x(x-1)}=x+1+\frac{1}{x}$$
By continue collecting the terms in this fashion we see that
$$S=\left(\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}\right)+\left(\frac{x^4}{x^2-1}+\frac{x^{4018}}{x^{2009}-1}\right)+\cdots+\left(\frac{x^{2010}}{x^{1005}-1}+\frac{x^{2012}}{x^{1006}-1}\right)$$
$$S=\left(x+1+\frac{1}{x}\right)+\left(x^2+1+\frac{1}{x^2}\right)+\cdots+\left(x^{1005}+1+\frac{1}{x^{1005}}\right)$$
$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( \frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}} \right)$$
And since $$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$, we have $$x^{\frac{1}{2}}=\frac{1}{x^{1005}}$$; $$x(x^{\frac{1}{2}})=\frac{1}{x^{1004}}$$; $$x^2(x^{\frac{1}{2}})=\frac{1}{x^{1003}}$$ and so on and so forth...
$$\frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}}$$ becomes $$x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004})$$ and
$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)$$
$$S=1005+\left(1+x+x^2+\cdots+x^{1004}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)-1+x^{1005}$$
$$S=1004+(1+x+x^2+\cdots+x^{1004})(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$(*)
I hope I don't confuse you, the reader at this point because I can tell my method is tedious and messy and also, quite confusing...:(
Notice that
$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$
$$x^{1005}-1=\frac{1}{x^{\frac{1}{2}}}-1=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}} \right)$$
and since $x \ne 1$,
$$\frac{x^{1005}-1}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x-1)} \right)$$
$$\frac{(x-1)(x^{1004}+x^{1003}+\cdots+1)}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}-1)(x^{\frac{1}{2}}+1)} \right)$$
$$x^{1004}+x^{1003}+\cdots+1=-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)$$
Now, substitute this into the equation (*) we get
$$S=1004-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$
$\therefore S=1004$