MHB Sum of Series: Let $x$ with x^{2011}=1 & x$\ne$1

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Series Sum
AI Thread Summary
The sum of the series $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$ for a complex number $x$ satisfying $x^{2011}=1$ and $x\ne1$ simplifies to 1004. The derivation involves recognizing patterns in the series and using properties of complex numbers, particularly the relationships between powers of $x$. Key steps include pairing terms and applying geometric series formulas. The final result confirms that the sum converges to a specific integer value. Thus, the computed sum is $S=1004$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.

Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.
 
Mathematics news on Phys.org
Let us first get rid of the doubled exponent on the numerator:

\[ \frac{x^{2n}}{x^n-1} = x^n \cdot \left(\frac{x^n}{x^n-1}\right) = x^n \cdot \left(1 + \frac{1}{x^n-1}\right)\]

So that we have

\[\sum_{k=1}^{2010}\frac{x^{2k}}{x^k-1}=\sum_{k=1}^{2010}x^k + \sum_{k=1}^{2010}\frac{x^k}{x^k-1}\]

and here we have $\sum_{k=1}^{2010}x^k = \frac{x-x^{2011}}{1-x} = \frac{x-1}{1-x}=-1$, hence we will concentrate on the term $\sum_{k=1}^{2010}\frac{x^k}{x^k-1}$.

Let us write $S = \sum_{k=1}^{2010}\frac{x^k}{x^k-1}$.

Note that $x^{2010} = x^{-1}$, thus $\frac{x^{2010} }{x^{2010} - 1} = \frac{x^{-1}}{x^{-1}-1} = \frac{1}{1-x} = - \frac{1}{x-1}$, and, in general we have $x^{2010-k} = x^{-k-1}$ thus
\[\frac{x^{2010-k}}{x^{2010-k}-1} = \frac{x^{-k-1}}{x^{-k-1}-1}=-\frac{1}{x^{k+1}-1}\]

Hence
\[S = \sum_{k=1}^{2010} \frac{x^k}{x^k-1} = \sum_{k=0}^{2009} \frac{x^{2010-k}}{x^{2010-k}-1} = - \sum_{k=0}^{2009}\frac{1}{x^{k+1}-1}= - \sum_{k=1}^{2010}\frac{1}{x^k-1}\]

so that
\[2S = \sum_{k=1}^{2010} \frac{x^k}{x^k - 1} - \sum_{k=1}^{2010}\frac{1}{x^k-1} = \sum_{k=1}^{2010}\frac{x^k-1}{x^k-1}=2010\]

thus $S = 1005$ and so
\[\sum_{k=1}^{2010}\frac{x^{2k}}{x^k-1}=1004\]
 
Last edited:
Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.

Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.

Hi PaulRS, thanks for participating and yes, your answer is correct.

My solution:

First, let $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.

We're told that $$x^{2011}=1$$. This implies

$$x^{4022}=1\;\rightarrow x^2(x^{4020})=1$$ or $$x^{4020}=\frac{1}{x^2}$$

From $$x^{4020}=\frac{1}{x^2}$$ we get

$$x^{2010}=\frac{1}{x}$$ and

$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$

Now, if we collect the very first and last term from the given series, we see that
$$
\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}=\frac{x^2}{x-1}+\frac{\frac{1}{x^2}}{\frac{1}{x}-1}=\frac{x^2}{x-1}-\frac{1}{x(x-1)}=\frac{x^3-1}{x(x-1)}=\frac{(x-1)(x^2+x+1)}{x(x-1)}=x+1+\frac{1}{x}$$

By continue collecting the terms in this fashion we see that

$$S=\left(\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}\right)+\left(\frac{x^4}{x^2-1}+\frac{x^{4018}}{x^{2009}-1}\right)+\cdots+\left(\frac{x^{2010}}{x^{1005}-1}+\frac{x^{2012}}{x^{1006}-1}\right)$$

$$S=\left(x+1+\frac{1}{x}\right)+\left(x^2+1+\frac{1}{x^2}\right)+\cdots+\left(x^{1005}+1+\frac{1}{x^{1005}}\right)$$

$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( \frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}} \right)$$

And since $$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$, we have $$x^{\frac{1}{2}}=\frac{1}{x^{1005}}$$; $$x(x^{\frac{1}{2}})=\frac{1}{x^{1004}}$$; $$x^2(x^{\frac{1}{2}})=\frac{1}{x^{1003}}$$ and so on and so forth...

$$\frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}}$$ becomes $$x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004})$$ and

$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)$$

$$S=1005+\left(1+x+x^2+\cdots+x^{1004}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)-1+x^{1005}$$

$$S=1004+(1+x+x^2+\cdots+x^{1004})(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$(*)

I hope I don't confuse you, the reader at this point because I can tell my method is tedious and messy and also, quite confusing...:(

Notice that

$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$

$$x^{1005}-1=\frac{1}{x^{\frac{1}{2}}}-1=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}} \right)$$

and since $x \ne 1$,

$$\frac{x^{1005}-1}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x-1)} \right)$$

$$\frac{(x-1)(x^{1004}+x^{1003}+\cdots+1)}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}-1)(x^{\frac{1}{2}}+1)} \right)$$

$$x^{1004}+x^{1003}+\cdots+1=-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)$$

Now, substitute this into the equation (*) we get

$$S=1004-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$

$\therefore S=1004$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top