Sum of Series: Let $x$ with x^{2011}=1 & x$\ne$1

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Series Sum
Click For Summary
SUMMARY

The sum of the series $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$ for a complex number $x$ satisfying $$x^{2011}=1$$ and $$x\ne1$$ is computed to be 1004. The derivation involves manipulating terms and recognizing patterns in the series, ultimately leading to the conclusion that $$S=1004$$ through careful algebraic simplifications and substitutions.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with geometric series and their summation
  • Knowledge of algebraic manipulation techniques
  • Experience with polynomial identities and roots of unity
NEXT STEPS
  • Study the properties of roots of unity, particularly for $x^{2011}=1$
  • Learn about geometric series and their applications in complex analysis
  • Explore advanced algebraic techniques for simplifying series
  • Investigate the implications of complex number manipulations in mathematical proofs
USEFUL FOR

Mathematicians, students studying complex analysis, educators teaching algebraic techniques, and anyone interested in series summation and polynomial identities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.

Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.
 
Physics news on Phys.org
Let us first get rid of the doubled exponent on the numerator:

\[ \frac{x^{2n}}{x^n-1} = x^n \cdot \left(\frac{x^n}{x^n-1}\right) = x^n \cdot \left(1 + \frac{1}{x^n-1}\right)\]

So that we have

\[\sum_{k=1}^{2010}\frac{x^{2k}}{x^k-1}=\sum_{k=1}^{2010}x^k + \sum_{k=1}^{2010}\frac{x^k}{x^k-1}\]

and here we have $\sum_{k=1}^{2010}x^k = \frac{x-x^{2011}}{1-x} = \frac{x-1}{1-x}=-1$, hence we will concentrate on the term $\sum_{k=1}^{2010}\frac{x^k}{x^k-1}$.

Let us write $S = \sum_{k=1}^{2010}\frac{x^k}{x^k-1}$.

Note that $x^{2010} = x^{-1}$, thus $\frac{x^{2010} }{x^{2010} - 1} = \frac{x^{-1}}{x^{-1}-1} = \frac{1}{1-x} = - \frac{1}{x-1}$, and, in general we have $x^{2010-k} = x^{-k-1}$ thus
\[\frac{x^{2010-k}}{x^{2010-k}-1} = \frac{x^{-k-1}}{x^{-k-1}-1}=-\frac{1}{x^{k+1}-1}\]

Hence
\[S = \sum_{k=1}^{2010} \frac{x^k}{x^k-1} = \sum_{k=0}^{2009} \frac{x^{2010-k}}{x^{2010-k}-1} = - \sum_{k=0}^{2009}\frac{1}{x^{k+1}-1}= - \sum_{k=1}^{2010}\frac{1}{x^k-1}\]

so that
\[2S = \sum_{k=1}^{2010} \frac{x^k}{x^k - 1} - \sum_{k=1}^{2010}\frac{1}{x^k-1} = \sum_{k=1}^{2010}\frac{x^k-1}{x^k-1}=2010\]

thus $S = 1005$ and so
\[\sum_{k=1}^{2010}\frac{x^{2k}}{x^k-1}=1004\]
 
Last edited:
Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.

Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.

Hi PaulRS, thanks for participating and yes, your answer is correct.

My solution:

First, let $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.

We're told that $$x^{2011}=1$$. This implies

$$x^{4022}=1\;\rightarrow x^2(x^{4020})=1$$ or $$x^{4020}=\frac{1}{x^2}$$

From $$x^{4020}=\frac{1}{x^2}$$ we get

$$x^{2010}=\frac{1}{x}$$ and

$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$

Now, if we collect the very first and last term from the given series, we see that
$$
\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}=\frac{x^2}{x-1}+\frac{\frac{1}{x^2}}{\frac{1}{x}-1}=\frac{x^2}{x-1}-\frac{1}{x(x-1)}=\frac{x^3-1}{x(x-1)}=\frac{(x-1)(x^2+x+1)}{x(x-1)}=x+1+\frac{1}{x}$$

By continue collecting the terms in this fashion we see that

$$S=\left(\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}\right)+\left(\frac{x^4}{x^2-1}+\frac{x^{4018}}{x^{2009}-1}\right)+\cdots+\left(\frac{x^{2010}}{x^{1005}-1}+\frac{x^{2012}}{x^{1006}-1}\right)$$

$$S=\left(x+1+\frac{1}{x}\right)+\left(x^2+1+\frac{1}{x^2}\right)+\cdots+\left(x^{1005}+1+\frac{1}{x^{1005}}\right)$$

$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( \frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}} \right)$$

And since $$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$, we have $$x^{\frac{1}{2}}=\frac{1}{x^{1005}}$$; $$x(x^{\frac{1}{2}})=\frac{1}{x^{1004}}$$; $$x^2(x^{\frac{1}{2}})=\frac{1}{x^{1003}}$$ and so on and so forth...

$$\frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}}$$ becomes $$x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004})$$ and

$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)$$

$$S=1005+\left(1+x+x^2+\cdots+x^{1004}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)-1+x^{1005}$$

$$S=1004+(1+x+x^2+\cdots+x^{1004})(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$(*)

I hope I don't confuse you, the reader at this point because I can tell my method is tedious and messy and also, quite confusing...:(

Notice that

$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$

$$x^{1005}-1=\frac{1}{x^{\frac{1}{2}}}-1=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}} \right)$$

and since $x \ne 1$,

$$\frac{x^{1005}-1}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x-1)} \right)$$

$$\frac{(x-1)(x^{1004}+x^{1003}+\cdots+1)}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}-1)(x^{\frac{1}{2}}+1)} \right)$$

$$x^{1004}+x^{1003}+\cdots+1=-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)$$

Now, substitute this into the equation (*) we get

$$S=1004-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$

$\therefore S=1004$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K