MHB Sum of Series: Let $x$ with x^{2011}=1 & x$\ne$1

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Series Sum
AI Thread Summary
The sum of the series $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$ for a complex number $x$ satisfying $x^{2011}=1$ and $x\ne1$ simplifies to 1004. The derivation involves recognizing patterns in the series and using properties of complex numbers, particularly the relationships between powers of $x$. Key steps include pairing terms and applying geometric series formulas. The final result confirms that the sum converges to a specific integer value. Thus, the computed sum is $S=1004$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.

Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.
 
Mathematics news on Phys.org
Let us first get rid of the doubled exponent on the numerator:

\[ \frac{x^{2n}}{x^n-1} = x^n \cdot \left(\frac{x^n}{x^n-1}\right) = x^n \cdot \left(1 + \frac{1}{x^n-1}\right)\]

So that we have

\[\sum_{k=1}^{2010}\frac{x^{2k}}{x^k-1}=\sum_{k=1}^{2010}x^k + \sum_{k=1}^{2010}\frac{x^k}{x^k-1}\]

and here we have $\sum_{k=1}^{2010}x^k = \frac{x-x^{2011}}{1-x} = \frac{x-1}{1-x}=-1$, hence we will concentrate on the term $\sum_{k=1}^{2010}\frac{x^k}{x^k-1}$.

Let us write $S = \sum_{k=1}^{2010}\frac{x^k}{x^k-1}$.

Note that $x^{2010} = x^{-1}$, thus $\frac{x^{2010} }{x^{2010} - 1} = \frac{x^{-1}}{x^{-1}-1} = \frac{1}{1-x} = - \frac{1}{x-1}$, and, in general we have $x^{2010-k} = x^{-k-1}$ thus
\[\frac{x^{2010-k}}{x^{2010-k}-1} = \frac{x^{-k-1}}{x^{-k-1}-1}=-\frac{1}{x^{k+1}-1}\]

Hence
\[S = \sum_{k=1}^{2010} \frac{x^k}{x^k-1} = \sum_{k=0}^{2009} \frac{x^{2010-k}}{x^{2010-k}-1} = - \sum_{k=0}^{2009}\frac{1}{x^{k+1}-1}= - \sum_{k=1}^{2010}\frac{1}{x^k-1}\]

so that
\[2S = \sum_{k=1}^{2010} \frac{x^k}{x^k - 1} - \sum_{k=1}^{2010}\frac{1}{x^k-1} = \sum_{k=1}^{2010}\frac{x^k-1}{x^k-1}=2010\]

thus $S = 1005$ and so
\[\sum_{k=1}^{2010}\frac{x^{2k}}{x^k-1}=1004\]
 
Last edited:
Let $x$ be a complex number such that $$x^{2011}=1$$ and $x\ne1$.

Compute the sum $$\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.

Hi PaulRS, thanks for participating and yes, your answer is correct.

My solution:

First, let $$S=\frac{x^2}{x-1}+\frac{x^4}{x^2-1}+\frac{x^6}{x^3-1}+\cdots+\frac{x^{4020}}{x^{2010}-1}$$.

We're told that $$x^{2011}=1$$. This implies

$$x^{4022}=1\;\rightarrow x^2(x^{4020})=1$$ or $$x^{4020}=\frac{1}{x^2}$$

From $$x^{4020}=\frac{1}{x^2}$$ we get

$$x^{2010}=\frac{1}{x}$$ and

$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$

Now, if we collect the very first and last term from the given series, we see that
$$
\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}=\frac{x^2}{x-1}+\frac{\frac{1}{x^2}}{\frac{1}{x}-1}=\frac{x^2}{x-1}-\frac{1}{x(x-1)}=\frac{x^3-1}{x(x-1)}=\frac{(x-1)(x^2+x+1)}{x(x-1)}=x+1+\frac{1}{x}$$

By continue collecting the terms in this fashion we see that

$$S=\left(\frac{x^2}{x-1}+\frac{x^{4020}}{x^{2010}-1}\right)+\left(\frac{x^4}{x^2-1}+\frac{x^{4018}}{x^{2009}-1}\right)+\cdots+\left(\frac{x^{2010}}{x^{1005}-1}+\frac{x^{2012}}{x^{1006}-1}\right)$$

$$S=\left(x+1+\frac{1}{x}\right)+\left(x^2+1+\frac{1}{x^2}\right)+\cdots+\left(x^{1005}+1+\frac{1}{x^{1005}}\right)$$

$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( \frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}} \right)$$

And since $$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$, we have $$x^{\frac{1}{2}}=\frac{1}{x^{1005}}$$; $$x(x^{\frac{1}{2}})=\frac{1}{x^{1004}}$$; $$x^2(x^{\frac{1}{2}})=\frac{1}{x^{1003}}$$ and so on and so forth...

$$\frac{1}{x}+\frac{1}{x^2}+\cdots+\frac{1}{x^{1005}}$$ becomes $$x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004})$$ and

$$S=1005+\left(x+x^2+\cdots+x^{1005}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)$$

$$S=1005+\left(1+x+x^2+\cdots+x^{1004}\right)+\left( x^{\frac{1}{2}}(1+x+x^2+\cdots+x^{1004}) \right)-1+x^{1005}$$

$$S=1004+(1+x+x^2+\cdots+x^{1004})(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$(*)

I hope I don't confuse you, the reader at this point because I can tell my method is tedious and messy and also, quite confusing...:(

Notice that

$$x^{1005}=\frac{1}{x^{\frac{1}{2}}}$$

$$x^{1005}-1=\frac{1}{x^{\frac{1}{2}}}-1=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}} \right)$$

and since $x \ne 1$,

$$\frac{x^{1005}-1}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x-1)} \right)$$

$$\frac{(x-1)(x^{1004}+x^{1003}+\cdots+1)}{x-1}=-\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}-1)(x^{\frac{1}{2}}+1)} \right)$$

$$x^{1004}+x^{1003}+\cdots+1=-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)$$

Now, substitute this into the equation (*) we get

$$S=1004-\left(\frac{1}{x^{\frac{1}{2}}(x^{\frac{1}{2}}+1)} \right)(1+ x^{\frac{1}{2}})+\frac{1}{x^{\frac{1}{2}}}$$

$\therefore S=1004$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top