MHB Summation Challenge: Evaluate $\sum_{k=1}^{2014}\frac{1}{1-x_k}$

Click For Summary
The roots \( x_1, x_2, \ldots, x_{2014} \) are the 2014th roots of unity, excluding 1. The expression \( \sum_{k=1}^{2014} \frac{1}{1-x_k} \) can be evaluated using the formula for the sum of a geometric series. This leads to the simplification of the sum to \( \frac{2014}{1-1} \), which is undefined, indicating that the sum diverges. However, by considering the limit as \( x \) approaches 1, the sum converges to a specific value. Ultimately, the evaluation reveals that the sum equals 2014.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x_1,\,x_2,\,\cdots,\,x_{2014}$ be the roots of the equation $x^{2014}+x^{2013}+\cdots+x+1=0$. Evaluate $\displaystyle \sum_{k=1}^{2014} \dfrac{1}{1-x_k}$.
 
Mathematics news on Phys.org
Since the geometric series equals zero, alle the $2014$ roots, $x_k$, must obey the equation: $\frac{1-x_k^{2015}}{1-x_k} = 0 \;\;\;\;(1)$.

There is no real solution to the equation, so we are looking for complex solutions: $x_k = r_k \cdot e^{i \theta_k}$.

But, from the condition: $x_k^{2015} = 1$, we must require: $|x_k| = 1$ which implies: $r_k = 1$ for all $k$.

Thus all the roots have the form: $x_k = e^{i \theta_k}$, and the $\theta_k$-angles are readily found:

\[\left ( e^{i \theta_k } \right )^{2015} = 1 \Rightarrow \cos (2015 \; \theta_k)+i \sin (2015 \; \theta_k) = 1 \Rightarrow 2015 \; \theta_k = k\; 2\pi \Rightarrow \theta_k = \frac{2\pi}{2015}k,\;\;\; k = 1,2, ... , 2014.\]

Note, that the cases $k = 0$ and $k = 2015$ are not allowed, because of the singularity in $(1)$.

Rewriting the $k$th term in the sum:

\[\frac{1}{1-x_k}= \frac{1}{1-e^{i\theta_k}} = \frac{1-e^{i\theta_k}}{2-(e^{i\theta_k}+e^{-i\theta_k})}= \frac{1-\cos \theta_k - i \sin \theta_k}{2(1-\cos \theta_k)} = \frac{1}{2}\left ( 1- i\frac{\sin \theta_k}{1-\cos \theta_k} \right ) = \frac{1}{2}\left ( 1-i \cot\left ( \frac{\theta_k}{2} \right ) \right )\]

Finally, the sum can be evaluated:

\[\sum_{k=1}^{2014} \frac{1}{2}\left ( 1-i \cot\left ( \frac{\theta_k}{2} \right ) \right ) = 1007 - \frac{i}{2}\sum_{k=1}^{2014}\cot\left ( \frac{\pi}{2015}k \right )\]

The imaginary part is a telescoping sum:

\[\sum_{k=1}^{2014}\cot\left ( \frac{\pi}{2015}k \right ) = \sum_{k=1}^{1007}\left ( \cot\left ( \frac{\pi}{2015}k \right ) + \cot\left ( \frac{\pi}{2015} (2015-k) \right ) \right ) = \sum_{k=1}^{1007}\left ( \cot\left ( \frac{\pi}{2015}k \right ) + \cot\left (- \frac{\pi}{2015}k \right ) \right ) = 0\]

Thus we end up with the answer: \[\sum_{k=1}^{2014}\frac{1}{1-x_k} = 1007.\]
 
The numbers $x_1,x_2,\ldots,x_{2014}$, together with $1$, are the solutions of $x^{2015}-1=0$.

Replacing $x$ by $1-x$, the numbers $1-x_1,1-x_2\ldots,1-x_{2014}$, together with $0$, are the solutions of $(1-x)^{2015}-1=0$.

Replacing $x$ in that equation by $\dfrac1x$, the numbers $\dfrac1{1-x_1},\dfrac1{1-x_2}\ldots,\dfrac1{1-x_{2014}}$, are the solutions of $\left(1-\dfrac1x\right)^{2015}-1=0$, or $(x-1)^{2015} - x^{2015} = 0$. (The extra solution from the previous equations has now disappeared because the coefficient of $x^{2015}$ in that last equation is zero, so in fact there are only 2014 solutions.)

Using the binomial expansion of $(x-1)^{2015}$, that last equation becomes $$-{2015\choose1}x^{2014} + {2015\choose2}x^{2013} - \ldots = 0.$$ The sum of the roots is given by Vieta's formula as $\dfrac{2015\choose2}{2015\choose1} = \frac12(2014) = 1007.$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K