MHB Summation Challenge: Evaluate $\sum_{k=1}^{2014}\frac{1}{1-x_k}$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x_1,\,x_2,\,\cdots,\,x_{2014}$ be the roots of the equation $x^{2014}+x^{2013}+\cdots+x+1=0$. Evaluate $\displaystyle \sum_{k=1}^{2014} \dfrac{1}{1-x_k}$.
 
Mathematics news on Phys.org
Since the geometric series equals zero, alle the $2014$ roots, $x_k$, must obey the equation: $\frac{1-x_k^{2015}}{1-x_k} = 0 \;\;\;\;(1)$.

There is no real solution to the equation, so we are looking for complex solutions: $x_k = r_k \cdot e^{i \theta_k}$.

But, from the condition: $x_k^{2015} = 1$, we must require: $|x_k| = 1$ which implies: $r_k = 1$ for all $k$.

Thus all the roots have the form: $x_k = e^{i \theta_k}$, and the $\theta_k$-angles are readily found:

\[\left ( e^{i \theta_k } \right )^{2015} = 1 \Rightarrow \cos (2015 \; \theta_k)+i \sin (2015 \; \theta_k) = 1 \Rightarrow 2015 \; \theta_k = k\; 2\pi \Rightarrow \theta_k = \frac{2\pi}{2015}k,\;\;\; k = 1,2, ... , 2014.\]

Note, that the cases $k = 0$ and $k = 2015$ are not allowed, because of the singularity in $(1)$.

Rewriting the $k$th term in the sum:

\[\frac{1}{1-x_k}= \frac{1}{1-e^{i\theta_k}} = \frac{1-e^{i\theta_k}}{2-(e^{i\theta_k}+e^{-i\theta_k})}= \frac{1-\cos \theta_k - i \sin \theta_k}{2(1-\cos \theta_k)} = \frac{1}{2}\left ( 1- i\frac{\sin \theta_k}{1-\cos \theta_k} \right ) = \frac{1}{2}\left ( 1-i \cot\left ( \frac{\theta_k}{2} \right ) \right )\]

Finally, the sum can be evaluated:

\[\sum_{k=1}^{2014} \frac{1}{2}\left ( 1-i \cot\left ( \frac{\theta_k}{2} \right ) \right ) = 1007 - \frac{i}{2}\sum_{k=1}^{2014}\cot\left ( \frac{\pi}{2015}k \right )\]

The imaginary part is a telescoping sum:

\[\sum_{k=1}^{2014}\cot\left ( \frac{\pi}{2015}k \right ) = \sum_{k=1}^{1007}\left ( \cot\left ( \frac{\pi}{2015}k \right ) + \cot\left ( \frac{\pi}{2015} (2015-k) \right ) \right ) = \sum_{k=1}^{1007}\left ( \cot\left ( \frac{\pi}{2015}k \right ) + \cot\left (- \frac{\pi}{2015}k \right ) \right ) = 0\]

Thus we end up with the answer: \[\sum_{k=1}^{2014}\frac{1}{1-x_k} = 1007.\]
 
The numbers $x_1,x_2,\ldots,x_{2014}$, together with $1$, are the solutions of $x^{2015}-1=0$.

Replacing $x$ by $1-x$, the numbers $1-x_1,1-x_2\ldots,1-x_{2014}$, together with $0$, are the solutions of $(1-x)^{2015}-1=0$.

Replacing $x$ in that equation by $\dfrac1x$, the numbers $\dfrac1{1-x_1},\dfrac1{1-x_2}\ldots,\dfrac1{1-x_{2014}}$, are the solutions of $\left(1-\dfrac1x\right)^{2015}-1=0$, or $(x-1)^{2015} - x^{2015} = 0$. (The extra solution from the previous equations has now disappeared because the coefficient of $x^{2015}$ in that last equation is zero, so in fact there are only 2014 solutions.)

Using the binomial expansion of $(x-1)^{2015}$, that last equation becomes $$-{2015\choose1}x^{2014} + {2015\choose2}x^{2013} - \ldots = 0.$$ The sum of the roots is given by Vieta's formula as $\dfrac{2015\choose2}{2015\choose1} = \frac12(2014) = 1007.$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top