Summation: Evaluate \sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}

  • Context: MHB 
  • Thread starter Thread starter bincy
  • Start date Start date
  • Tags Tags
    Infinite Summation
Click For Summary
SUMMARY

The summation $$\sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}$$ converges for parameters where $$0 PREREQUISITES

  • Understanding of infinite series convergence
  • Familiarity with the Polylogarithm function
  • Basic knowledge of integral calculus
  • Concepts of upper bounds in mathematical analysis
NEXT STEPS
  • Research the properties of the Polylogarithm function, specifically $$\mbox{Li}_{s}(z)$$
  • Study convergence criteria for infinite series
  • Explore techniques for evaluating improper integrals
  • Learn about applications of upper bounds in series analysis
USEFUL FOR

Mathematicians, students studying series and convergence, and researchers interested in advanced calculus and special functions will benefit from this discussion.

bincy
Messages
38
Reaction score
0
Hii All,

Can anyone give me a hint to evaluate $$\sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}$$; Here $$0<m,\,a<1$$.


Please note that the summation converges and $$< \frac{a}{1-a}$$.

A tighter upper bound can be achieved as $$1+\int_{1}^{\infty}\frac{a^{x}}{x^{1-m}}dx$$.

Is there any way to get the exact summation?Thanks and regards,

Bincy
 
Last edited by a moderator:
Physics news on Phys.org
bincybn said:
Hii All,

Can anyone give me a hint to evaluate $$\sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}$$; Here $$0<m,\,a<1$$.


Please note that the summation converges and $$< \frac{a}{1-a}$$.

A tighter upper bound can be achieved as $$1+\int_{1}^{\infty}\frac{a^{x}}{x^{1-m}}dx$$.

Is there any way to get the exact summation?Thanks and regards,

Bincy

Hi Bincy, :)

This summation could be given in terms of the Polylogarithm function.

\[\sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}=\mbox{Li}_{1-m}(a)\mbox{ for }|a|<1\]
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K