MHB Summation: Evaluate \sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}

Click For Summary
The summation $$\sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}$$ converges for parameters where $$0<m,\,a<1$$, and is bounded by $$< \frac{a}{1-a}$$. A tighter upper bound is provided by the integral $$1+\int_{1}^{\infty}\frac{a^{x}}{x^{1-m}}dx$$. The exact evaluation of the summation can be expressed using the Polylogarithm function as $$\mbox{Li}_{1-m}(a)$$ for $$|a|<1$$. This formulation offers a precise way to understand the behavior of the series.
bincy
Messages
38
Reaction score
0
Hii All,

Can anyone give me a hint to evaluate $$\sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}$$; Here $$0<m,\,a<1$$.


Please note that the summation converges and $$< \frac{a}{1-a}$$.

A tighter upper bound can be achieved as $$1+\int_{1}^{\infty}\frac{a^{x}}{x^{1-m}}dx$$.

Is there any way to get the exact summation?Thanks and regards,

Bincy
 
Last edited by a moderator:
Physics news on Phys.org
bincybn said:
Hii All,

Can anyone give me a hint to evaluate $$\sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}$$; Here $$0<m,\,a<1$$.


Please note that the summation converges and $$< \frac{a}{1-a}$$.

A tighter upper bound can be achieved as $$1+\int_{1}^{\infty}\frac{a^{x}}{x^{1-m}}dx$$.

Is there any way to get the exact summation?Thanks and regards,

Bincy

Hi Bincy, :)

This summation could be given in terms of the Polylogarithm function.

\[\sum_{n=1}^{\infty}\frac{a^{n}}{n^{1-m}}=\mbox{Li}_{1-m}(a)\mbox{ for }|a|<1\]
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K