MHB Summation of an infinite series

Click For Summary
The discussion focuses on proving the equality of the infinite series $\sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right)$ and $\arctan \left( \text{tanh} \left( \frac{\pi}{4} \right) \right)$. Participants suggest using the complex logarithm representation of the inverse tangent and trigonometric identities to transform the series. A specific formula involving the sum of arctangents is introduced, leading to the conclusion that the series can be expressed in terms of $\tan^{-1}\left(\frac{1}{2(2n+1)^{2}}\right)$. Ultimately, applying the derived formula confirms the original equality.
polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right) = \arctan \Bigg( \text{tanh} \Big( \frac{\pi}{4} \Big) \Bigg)$.I'm tempted to give a hint (or two) right off the bat. But I'll wait.
 
Mathematics news on Phys.org
Random Variable said:
Show that $\displaystyle \sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right) = \arctan \Bigg( \text{tanh} \Big( \frac{\pi}{4} \Big) \Bigg)$.I'm tempted to give a hint (or two) right off the bat. But I'll wait.

Would the hınt dırect one ın the towards of the exponentıal representatıon of tan and the use of logs by any chance?

CB
 
CaptainBlack said:
Would the hınt dırect one ın the towards of the exponentıal representation of tan and the use of logs by any chance?

CB
Yes, I was going to suggest representing the inverse tangent using the complex logarithm, but in a simpler way than it's usually represented. But I was also going to suggest using a trig identity to first write the series in a different form so that's it's not an alternating series.
 
Hi RV. Cool problem.$$\frac{\pi}{4}-\tan^{-1}(1/3)+tan^{-1}(1/5)-\tan^{-1}(1/7)+\cdot\cdot\cdot$$

$$\left(\frac{\pi}{4}+\tan^{-1}(1/5)+\tan^{-1}(1/9)+\cdot\cdot\cdot\right) -\left(\tan^{-1}(1/3)+tan^{-1}(1/7)+\tan^{-1}(1/11)+\cdot\cdot\cdot \right)$$

This can now be written as:

$$\sum_{n=0}^{\infty}\left[\tan^{-1}\left(\frac{1}{4n+1}\right)-\tan^{-1}\left(\frac{1}{4n+3}\right)\right]$$
$$\sum_{n=0}^{\infty}\left[\tan^{-1}(4n+3)-\tan^{-1}(4n+1)\right]$$

$$=\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{8n^{2}+8n+2}\right)$$

$$=\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{2(2n+1)^{2}}\right)$$

Now, we can use the formula:

$$\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{2xy}{(2n+1)^{2}-x^{2}+y^{2}}\right)=\tan^{-1}\left(\tan(\frac{{\pi}x}{2})\tanh(\frac{{\pi}y}{2})\right)$$

Now, let $$x=y=1/2$$ in the formula and we arrive at:

$$\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{2(2n+1)^{2}}\right)=\tan^{-1}\left(\tanh(\frac{\pi}{4})\right)$$

The formula above is derived by using the argument of

$$\cos(\pi z)=\prod_{k=0}^{\infty}\left(1-\frac{4z^{2}}{(2k+1)^{2}}\right)$$

$$\cos(\pi z)=\cos(\pi x)\cosh(\pi y)+\sin(\pi x)\sinh(\pi y)i$$.

and by noting that $$\text{arg}\prod(a+bi)=\sum \tan^{-1}\left(\frac{b}{a}\right)$$
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
3K
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K