MHB Summation of an infinite series

AI Thread Summary
The discussion focuses on proving the equality of the infinite series $\sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right)$ and $\arctan \left( \text{tanh} \left( \frac{\pi}{4} \right) \right)$. Participants suggest using the complex logarithm representation of the inverse tangent and trigonometric identities to transform the series. A specific formula involving the sum of arctangents is introduced, leading to the conclusion that the series can be expressed in terms of $\tan^{-1}\left(\frac{1}{2(2n+1)^{2}}\right)$. Ultimately, applying the derived formula confirms the original equality.
polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right) = \arctan \Bigg( \text{tanh} \Big( \frac{\pi}{4} \Big) \Bigg)$.I'm tempted to give a hint (or two) right off the bat. But I'll wait.
 
Mathematics news on Phys.org
Random Variable said:
Show that $\displaystyle \sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right) = \arctan \Bigg( \text{tanh} \Big( \frac{\pi}{4} \Big) \Bigg)$.I'm tempted to give a hint (or two) right off the bat. But I'll wait.

Would the hınt dırect one ın the towards of the exponentıal representatıon of tan and the use of logs by any chance?

CB
 
CaptainBlack said:
Would the hınt dırect one ın the towards of the exponentıal representation of tan and the use of logs by any chance?

CB
Yes, I was going to suggest representing the inverse tangent using the complex logarithm, but in a simpler way than it's usually represented. But I was also going to suggest using a trig identity to first write the series in a different form so that's it's not an alternating series.
 
Hi RV. Cool problem.$$\frac{\pi}{4}-\tan^{-1}(1/3)+tan^{-1}(1/5)-\tan^{-1}(1/7)+\cdot\cdot\cdot$$

$$\left(\frac{\pi}{4}+\tan^{-1}(1/5)+\tan^{-1}(1/9)+\cdot\cdot\cdot\right) -\left(\tan^{-1}(1/3)+tan^{-1}(1/7)+\tan^{-1}(1/11)+\cdot\cdot\cdot \right)$$

This can now be written as:

$$\sum_{n=0}^{\infty}\left[\tan^{-1}\left(\frac{1}{4n+1}\right)-\tan^{-1}\left(\frac{1}{4n+3}\right)\right]$$
$$\sum_{n=0}^{\infty}\left[\tan^{-1}(4n+3)-\tan^{-1}(4n+1)\right]$$

$$=\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{8n^{2}+8n+2}\right)$$

$$=\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{2(2n+1)^{2}}\right)$$

Now, we can use the formula:

$$\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{2xy}{(2n+1)^{2}-x^{2}+y^{2}}\right)=\tan^{-1}\left(\tan(\frac{{\pi}x}{2})\tanh(\frac{{\pi}y}{2})\right)$$

Now, let $$x=y=1/2$$ in the formula and we arrive at:

$$\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{2(2n+1)^{2}}\right)=\tan^{-1}\left(\tanh(\frac{\pi}{4})\right)$$

The formula above is derived by using the argument of

$$\cos(\pi z)=\prod_{k=0}^{\infty}\left(1-\frac{4z^{2}}{(2k+1)^{2}}\right)$$

$$\cos(\pi z)=\cos(\pi x)\cosh(\pi y)+\sin(\pi x)\sinh(\pi y)i$$.

and by noting that $$\text{arg}\prod(a+bi)=\sum \tan^{-1}\left(\frac{b}{a}\right)$$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top