Summation of an infinite series

Click For Summary

Discussion Overview

The discussion revolves around the summation of an infinite series involving the arctangent function, specifically the series $\displaystyle \sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right)$ and its relation to $\arctan \left( \text{tanh} \left( \frac{\pi}{4} \right) \right)$. Participants explore various approaches to prove this equality, including the use of complex logarithms and trigonometric identities.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant suggests using the exponential representation of the tangent function and logarithms as a hint for solving the series.
  • Another participant proposes representing the inverse tangent using complex logarithms and suggests rewriting the series to avoid it being an alternating series.
  • A different participant presents a reformulation of the series, breaking it down into sums of arctangents and applying a specific formula involving $\tan^{-1}$ to derive the desired result.
  • There is mention of using a product representation of cosine to derive the formula used in the series summation.

Areas of Agreement / Disagreement

Participants present various methods and approaches to tackle the problem, but there is no consensus on a single method or resolution of the series. Multiple competing views and techniques remain in the discussion.

Contextual Notes

Some assumptions about the convergence of the series and the applicability of the formulas used are not explicitly stated, leaving some steps and conditions unresolved.

polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right) = \arctan \Bigg( \text{tanh} \Big( \frac{\pi}{4} \Big) \Bigg)$.I'm tempted to give a hint (or two) right off the bat. But I'll wait.
 
Physics news on Phys.org
Random Variable said:
Show that $\displaystyle \sum_{n=0}^{\infty} (-1)^{n} \arctan \left( \frac{1}{2n+1} \right) = \arctan \Bigg( \text{tanh} \Big( \frac{\pi}{4} \Big) \Bigg)$.I'm tempted to give a hint (or two) right off the bat. But I'll wait.

Would the hınt dırect one ın the towards of the exponentıal representatıon of tan and the use of logs by any chance?

CB
 
CaptainBlack said:
Would the hınt dırect one ın the towards of the exponentıal representation of tan and the use of logs by any chance?

CB
Yes, I was going to suggest representing the inverse tangent using the complex logarithm, but in a simpler way than it's usually represented. But I was also going to suggest using a trig identity to first write the series in a different form so that's it's not an alternating series.
 
Hi RV. Cool problem.$$\frac{\pi}{4}-\tan^{-1}(1/3)+tan^{-1}(1/5)-\tan^{-1}(1/7)+\cdot\cdot\cdot$$

$$\left(\frac{\pi}{4}+\tan^{-1}(1/5)+\tan^{-1}(1/9)+\cdot\cdot\cdot\right) -\left(\tan^{-1}(1/3)+tan^{-1}(1/7)+\tan^{-1}(1/11)+\cdot\cdot\cdot \right)$$

This can now be written as:

$$\sum_{n=0}^{\infty}\left[\tan^{-1}\left(\frac{1}{4n+1}\right)-\tan^{-1}\left(\frac{1}{4n+3}\right)\right]$$
$$\sum_{n=0}^{\infty}\left[\tan^{-1}(4n+3)-\tan^{-1}(4n+1)\right]$$

$$=\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{8n^{2}+8n+2}\right)$$

$$=\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{2(2n+1)^{2}}\right)$$

Now, we can use the formula:

$$\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{2xy}{(2n+1)^{2}-x^{2}+y^{2}}\right)=\tan^{-1}\left(\tan(\frac{{\pi}x}{2})\tanh(\frac{{\pi}y}{2})\right)$$

Now, let $$x=y=1/2$$ in the formula and we arrive at:

$$\sum_{n=0}^{\infty}\tan^{-1}\left(\frac{1}{2(2n+1)^{2}}\right)=\tan^{-1}\left(\tanh(\frac{\pi}{4})\right)$$

The formula above is derived by using the argument of

$$\cos(\pi z)=\prod_{k=0}^{\infty}\left(1-\frac{4z^{2}}{(2k+1)^{2}}\right)$$

$$\cos(\pi z)=\cos(\pi x)\cosh(\pi y)+\sin(\pi x)\sinh(\pi y)i$$.

and by noting that $$\text{arg}\prod(a+bi)=\sum \tan^{-1}\left(\frac{b}{a}\right)$$
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K