MHB Summing a Series of Cubic Roots

Click For Summary
The discussion revolves around calculating the series sum $$\sum_{n=1}^{999}\dfrac{1}{a_n}$$ with the expression for $a_n$ defined as the sum of three cubic roots. Participants share their approaches and solutions to this problem, referencing its origin from an International Mathematical Olympiad (IMO) problem in China. The conversation includes acknowledgments between users, indicating a collaborative effort in solving the mathematical challenge. The focus remains on finding the correct evaluation of the series. Overall, the thread emphasizes problem-solving techniques related to cubic roots in series summation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Sum the series below:

$$\sum_{n=1}^{999}\dfrac{1}{a_n}$$ where $a_n=\sqrt[3]{n^2-2n+1}+\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}$.
 
Mathematics news on Phys.org
Here is my solution.

Note

$$a_n = (n-1)^{2/3} + (n + 1)^{2/3} + (n-1)^{1/3}(n+1)^{1/3} = \frac{(n+1) - (n-1)}{\sqrt[3]{n+1} - \sqrt[3]{n-1}} = \frac{2}{\sqrt[3]{n+1} - \sqrt[3]{n-1}}.$$

Therefore

$$\sum_{n = 1}^{999} \frac{1}{a_n} = \frac{1}{2}\sum_{n = 1}^{999} (\sqrt[3]{n+1} - \sqrt[3]{n-1}) = \frac{1}{2}\sum_{n = 1}^{999} [(\sqrt[3]{n+1} - \sqrt[3]{n}) + (\sqrt[3]{n} - \sqrt[3]{n-1})]$$
$$ = \frac{1}{2}[(\sqrt[3]{1000} - \sqrt[3]{1}) + (\sqrt[3]{999} - \sqrt[3]{0})] = \frac{9 + 3\sqrt[3]{37}}{2}.$$
 
Euge said:
Here is my solution.

Note

$$a_n = (n-1)^{2/3} + (n + 1)^{2/3} + (n-1)^{1/3}(n+1)^{1/3} = \frac{(n+1) - (n-1)}{\sqrt[3]{n+1} - \sqrt[3]{n-1}} = \frac{2}{\sqrt[3]{n+1} - \sqrt[3]{n-1}}.$$

Therefore

$$\sum_{n = 1}^{999} \frac{1}{a_n} = \frac{1}{2}\sum_{n = 1}^{999} (\sqrt[3]{n+1} - \sqrt[3]{n-1}) = \frac{1}{2}\sum_{n = 1}^{999} [(\sqrt[3]{n+1} - \sqrt[3]{n}) + (\sqrt[3]{n} - \sqrt[3]{n-1})]$$
$$ = \frac{1}{2}[(\sqrt[3]{1000} - \sqrt[3]{1}) + (\sqrt[3]{999} - \sqrt[3]{0})] = \frac{9 + 3\sqrt[3]{37}}{2}.$$

Thanks Euge for participating in this IMO Problem from China!

For me, it took me a fraction of time to realize $a_n$ is a geometric series that consists of the first three terms. :)
 
Hi anemone,

What do you mean when you say that $a_n$ is a geometric series? There isn't a common ratio between consecutive terms.
 
Euge said:
Hi anemone,

What do you mean when you say that $a_n$ is a geometric series? There isn't a common ratio between consecutive terms.

Hi Euge,
If I rewrite $a_n$ in such a way that it now becomes $a_n=\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}+\sqrt[3]{n^2-2n+1}$, then I noticed that

$\dfrac{\sqrt[3]{n^2-1}}{\sqrt[3]{n^2+2n+1}}=\dfrac{\sqrt[3]{n^2-2n+1}}{\sqrt[3]{n^2-1}}$

Therefore, $\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}+\sqrt[3]{n^2-2n+1}$ is a geometric series with:
  • the first term $\sqrt[3]{n^2+2n+1}=(n+1)^{\frac{2}{3}}$ and
  • the common ratio of $\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}$.

Therefore, $a_n=\dfrac{((n+1)^{\frac{2}{3}})\left(1-\left(\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}\right)^3\right)}{1-\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}}=\dfrac{2}{(n+1)^{\frac{1}{3}}-(n-1)^{\frac{1}{3}}}$
 
Hi anemone,

Thanks for clarifying. Now I understand what you mean. (Nod)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 16 ·
Replies
16
Views
1K