MHB Summing a Series of Cubic Roots

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Sum the series below:

$$\sum_{n=1}^{999}\dfrac{1}{a_n}$$ where $a_n=\sqrt[3]{n^2-2n+1}+\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}$.
 
Mathematics news on Phys.org
Here is my solution.

Note

$$a_n = (n-1)^{2/3} + (n + 1)^{2/3} + (n-1)^{1/3}(n+1)^{1/3} = \frac{(n+1) - (n-1)}{\sqrt[3]{n+1} - \sqrt[3]{n-1}} = \frac{2}{\sqrt[3]{n+1} - \sqrt[3]{n-1}}.$$

Therefore

$$\sum_{n = 1}^{999} \frac{1}{a_n} = \frac{1}{2}\sum_{n = 1}^{999} (\sqrt[3]{n+1} - \sqrt[3]{n-1}) = \frac{1}{2}\sum_{n = 1}^{999} [(\sqrt[3]{n+1} - \sqrt[3]{n}) + (\sqrt[3]{n} - \sqrt[3]{n-1})]$$
$$ = \frac{1}{2}[(\sqrt[3]{1000} - \sqrt[3]{1}) + (\sqrt[3]{999} - \sqrt[3]{0})] = \frac{9 + 3\sqrt[3]{37}}{2}.$$
 
Euge said:
Here is my solution.

Note

$$a_n = (n-1)^{2/3} + (n + 1)^{2/3} + (n-1)^{1/3}(n+1)^{1/3} = \frac{(n+1) - (n-1)}{\sqrt[3]{n+1} - \sqrt[3]{n-1}} = \frac{2}{\sqrt[3]{n+1} - \sqrt[3]{n-1}}.$$

Therefore

$$\sum_{n = 1}^{999} \frac{1}{a_n} = \frac{1}{2}\sum_{n = 1}^{999} (\sqrt[3]{n+1} - \sqrt[3]{n-1}) = \frac{1}{2}\sum_{n = 1}^{999} [(\sqrt[3]{n+1} - \sqrt[3]{n}) + (\sqrt[3]{n} - \sqrt[3]{n-1})]$$
$$ = \frac{1}{2}[(\sqrt[3]{1000} - \sqrt[3]{1}) + (\sqrt[3]{999} - \sqrt[3]{0})] = \frac{9 + 3\sqrt[3]{37}}{2}.$$

Thanks Euge for participating in this IMO Problem from China!

For me, it took me a fraction of time to realize $a_n$ is a geometric series that consists of the first three terms. :)
 
Hi anemone,

What do you mean when you say that $a_n$ is a geometric series? There isn't a common ratio between consecutive terms.
 
Euge said:
Hi anemone,

What do you mean when you say that $a_n$ is a geometric series? There isn't a common ratio between consecutive terms.

Hi Euge,
If I rewrite $a_n$ in such a way that it now becomes $a_n=\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}+\sqrt[3]{n^2-2n+1}$, then I noticed that

$\dfrac{\sqrt[3]{n^2-1}}{\sqrt[3]{n^2+2n+1}}=\dfrac{\sqrt[3]{n^2-2n+1}}{\sqrt[3]{n^2-1}}$

Therefore, $\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}+\sqrt[3]{n^2-2n+1}$ is a geometric series with:
  • the first term $\sqrt[3]{n^2+2n+1}=(n+1)^{\frac{2}{3}}$ and
  • the common ratio of $\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}$.

Therefore, $a_n=\dfrac{((n+1)^{\frac{2}{3}})\left(1-\left(\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}\right)^3\right)}{1-\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}}=\dfrac{2}{(n+1)^{\frac{1}{3}}-(n-1)^{\frac{1}{3}}}$
 
Hi anemone,

Thanks for clarifying. Now I understand what you mean. (Nod)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top