Summing a Series of Cubic Roots

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots Series
Click For Summary

Discussion Overview

The discussion revolves around summing a series involving cubic roots, specifically the series $$\sum_{n=1}^{999}\dfrac{1}{a_n}$$ where $a_n$ is defined as $\sqrt[3]{n^2-2n+1}+\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}$. The scope includes mathematical reasoning and problem-solving related to this series.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the series to be summed and defines $a_n$.
  • Another participant claims to have a solution but does not provide details in the post.
  • A third participant also claims to have a solution without elaboration.
  • There is an acknowledgment of participation in an International Mathematical Olympiad (IMO) problem from China.
  • Several participants greet each other, indicating a collaborative atmosphere.

Areas of Agreement / Disagreement

The discussion does not show clear agreement or disagreement on the solution, as no detailed solutions or critiques have been provided. Multiple participants claim to have solutions, but these are not elaborated upon, leaving the discussion unresolved.

Contextual Notes

Details of the proposed solutions are missing, and there is no indication of the correctness or completeness of the approaches presented.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Sum the series below:

$$\sum_{n=1}^{999}\dfrac{1}{a_n}$$ where $a_n=\sqrt[3]{n^2-2n+1}+\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}$.
 
Physics news on Phys.org
Here is my solution.

Note

$$a_n = (n-1)^{2/3} + (n + 1)^{2/3} + (n-1)^{1/3}(n+1)^{1/3} = \frac{(n+1) - (n-1)}{\sqrt[3]{n+1} - \sqrt[3]{n-1}} = \frac{2}{\sqrt[3]{n+1} - \sqrt[3]{n-1}}.$$

Therefore

$$\sum_{n = 1}^{999} \frac{1}{a_n} = \frac{1}{2}\sum_{n = 1}^{999} (\sqrt[3]{n+1} - \sqrt[3]{n-1}) = \frac{1}{2}\sum_{n = 1}^{999} [(\sqrt[3]{n+1} - \sqrt[3]{n}) + (\sqrt[3]{n} - \sqrt[3]{n-1})]$$
$$ = \frac{1}{2}[(\sqrt[3]{1000} - \sqrt[3]{1}) + (\sqrt[3]{999} - \sqrt[3]{0})] = \frac{9 + 3\sqrt[3]{37}}{2}.$$
 
Euge said:
Here is my solution.

Note

$$a_n = (n-1)^{2/3} + (n + 1)^{2/3} + (n-1)^{1/3}(n+1)^{1/3} = \frac{(n+1) - (n-1)}{\sqrt[3]{n+1} - \sqrt[3]{n-1}} = \frac{2}{\sqrt[3]{n+1} - \sqrt[3]{n-1}}.$$

Therefore

$$\sum_{n = 1}^{999} \frac{1}{a_n} = \frac{1}{2}\sum_{n = 1}^{999} (\sqrt[3]{n+1} - \sqrt[3]{n-1}) = \frac{1}{2}\sum_{n = 1}^{999} [(\sqrt[3]{n+1} - \sqrt[3]{n}) + (\sqrt[3]{n} - \sqrt[3]{n-1})]$$
$$ = \frac{1}{2}[(\sqrt[3]{1000} - \sqrt[3]{1}) + (\sqrt[3]{999} - \sqrt[3]{0})] = \frac{9 + 3\sqrt[3]{37}}{2}.$$

Thanks Euge for participating in this IMO Problem from China!

For me, it took me a fraction of time to realize $a_n$ is a geometric series that consists of the first three terms. :)
 
Hi anemone,

What do you mean when you say that $a_n$ is a geometric series? There isn't a common ratio between consecutive terms.
 
Euge said:
Hi anemone,

What do you mean when you say that $a_n$ is a geometric series? There isn't a common ratio between consecutive terms.

Hi Euge,
If I rewrite $a_n$ in such a way that it now becomes $a_n=\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}+\sqrt[3]{n^2-2n+1}$, then I noticed that

$\dfrac{\sqrt[3]{n^2-1}}{\sqrt[3]{n^2+2n+1}}=\dfrac{\sqrt[3]{n^2-2n+1}}{\sqrt[3]{n^2-1}}$

Therefore, $\sqrt[3]{n^2+2n+1}+\sqrt[3]{n^2-1}+\sqrt[3]{n^2-2n+1}$ is a geometric series with:
  • the first term $\sqrt[3]{n^2+2n+1}=(n+1)^{\frac{2}{3}}$ and
  • the common ratio of $\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}$.

Therefore, $a_n=\dfrac{((n+1)^{\frac{2}{3}})\left(1-\left(\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}\right)^3\right)}{1-\left(\dfrac{n-1}{n+1}\right)^{\frac{1}{3}}}=\dfrac{2}{(n+1)^{\frac{1}{3}}-(n-1)^{\frac{1}{3}}}$
 
Hi anemone,

Thanks for clarifying. Now I understand what you mean. (Nod)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K