- #1
The Captain
- 21
- 0
Homework Statement
Given A and B are sets of numbers, [tex]A \neq \left\{ \right\} [/tex], [tex]B[/tex] is bounded above, and [tex] A \subseteq B [/tex].
Explain why sup(A) and sup(B) exist and why [tex]sup(A) \leq sup(B)[/tex].
Homework Equations
[tex] \exists r \in \mathbb R \: : \: r \geq a \: \forall a \in A [/tex]
[tex] \exists r \in \mathbb R \: : \: A \subset \left[ - \infty , r \right] [/tex]
The Attempt at a Solution
If [tex] k \in B: k \geq s, \: \forall s \in S [/tex]. Then [tex] k = sup(B)[/tex].
Last edited: