MHB Surjectivity for permutation representation of a group action

kalish1
Messages
79
Reaction score
0
I am having trouble proving that my function is surjective. Here is the problem statement:

Problem statement: Let T be the tetrahedral rotation group. Use a suitable action of T on some set, and the permutation representation of this action, to show that T is isomorphic to a subgroup of $S_4$.

Outline of my attempt at a proof:

Let $S$ be the set of faces of the tetrahedron. There exists a homomorphism $f:T$ $\rightarrow$ (permutations of the faces). There are $4$ faces, so $|Perm(|4|)| = 24$. We want to show that $T$ is a bijection, and show the faithfulness of $f$. Well, $|Ker(f)|=1$, because no rotation fixes all faces. So $f$ is injective. Also, the class equation for $T$ is $12 = 1+3+4+4$, which admits no "subsums" to $6$, implying that there are no odd permutations because $T$ has no subgroup of index $2$. So $T \approx A_4$, which is a subgroup of $S_4$.

The thing that evades me is how to prove that $f$ is surjective?
 
Physics news on Phys.org
kalish said:
I am having trouble proving that my function is surjective. Here is the problem statement:

Problem statement: Let T be the tetrahedral rotation group. Use a suitable action of T on some set, and the permutation representation of this action, to show that T is isomorphic to a subgroup of $S_4$.

Outline of my attempt at a proof:

Let $S$ be the set of faces of the tetrahedron. There exists a homomorphism $f:T$ $\rightarrow$ (permutations of the faces). There are $4$ faces, so $|Perm(|4|)| = 24$. We want to show that $T$ is a bijection, and show the faithfulness of $f$. Well, $|Ker(f)|=1$, because no rotation fixes all faces. So $f$ is injective. Also, the class equation for $T$ is $12 = 1+3+4+4$, which admits no "subsums" to $6$, implying that there are no odd permutations because $T$ has no subgroup of index $2$. So $T \approx A_4$, which is a subgroup of $S_4$.

The thing that evades me is how to prove that $f$ is surjective?

It is not.
$T$ is isomorphic with $A_4$, which has 12 elements.
However, there are 24 permutations of the faces.
So f cannot be surjective.
Note that for instance the exchange of exactly 2 faces is not possible.
 
All you are required to do is show that $T$ is isomorphic to some SUBGROUP of $S_4$. In practical terms, this means finding a suitable set of 4 objects on which $T$ acts injectively. The 4 faces of the tetrahedron work just fine, and your proposed map is injective, so you are finished.

If you MUST prove surjectivity of SOMETHING, you need only show that there is a surjective map of $T$ onto $A_4$, which it appears you have already done, since $S_4$ has PRECISELY ONE subgroup of order 12.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
13
Views
564
Replies
7
Views
2K
Replies
18
Views
2K
Replies
1
Views
2K
Replies
5
Views
3K
Replies
3
Views
430
Replies
5
Views
2K
Back
Top