MHB SW1986's question at Yahoo Answers regarding a solid of revolution

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Revolution Solid
Click For Summary
The discussion revolves around calculating the volume of a solid of revolution defined by the function y=(x^3)-(x^5) between x=0 and x=1, revolving around the line x=3. The shell method is suggested for finding the volume, with the volume element expressed as dV=2π(3-x)(x^3-x^5)dx. After integrating, the volume is calculated to be V=27π/70. The washer method is deemed impractical due to difficulties in expressing y in terms of x. The response encourages further calculus inquiries in the forum for additional assistance.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Volume of a solid of revolution about x=3?

What is the volume of the solid of revolution bounded by
y=(x^3)-(x^5)
y=0
x=0
x=1

I have been using the shell method and I keep getting a negative answer which is obviously incorrect. (I keep getting 2pi(-14183/140). I'm trying to get the integral set up to use the washer method but I am having a very hard time integrating with respect to y instead of x. For example, I don't know how to express y=x^3-x^5 in terms of y. Help?

Here is a link to the question:

Volume of a solid of revolution about x=3? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: SW1986's question at Yahoo! Answers regarding a sold of revolution

Hello SW1986,

The first thing I like to do is plot the region to be revolved:

https://www.physicsforums.com/attachments/806._xfImport

Using the shell method, we may first compute the volume of an arbitrary shell:

$$dV=2\pi rh\,dx$$

where:

$$r=3-x$$

$$h=x^3-x^5$$

and so we have:

$$dV=2\pi (3-x)\left(x^3-x^5 \right)\,dx=2\pi\left(x^6-3x^5-x^4+3x^3 \right)\,dx$$

Summing the shells by integration, we then find:

$$V=2\pi\int_0^1 x^6-3x^5-x^4+3x^3\,dx=2\pi\left[\frac{x^7}{7}-\frac{x^6}{2}-\frac{x^5}{5}+\frac{3x^4}{4} \right]_0^1=2\pi\left(\frac{1}{7}-\frac{1}{2}-\frac{1}{5}+\frac{3}{4} \right)=\frac{27\pi}{70}$$

In this case, since we cannot explicitly solve the given function for $x$, using the washer method is impractical.

To SW1986 and any other guests viewing this topic, I invite and encourage you to post other calculus questions here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 

Attachments

  • sw1986.jpg
    sw1986.jpg
    5.7 KB · Views: 95
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K