- #1
moont14263
- 40
- 0
Hi. I have the following question:
Let [itex]G[/itex] be a finite group. Let [itex]K[/itex] be a subgroup of [itex]G[/itex] and let [itex]N[/itex] be a normal subgroup of [itex]G[/itex]. Let [itex]P[/itex] be a Sylow [itex]p[/itex]-subgroup of [itex]K[/itex]. Is [itex]PN/N[/itex] is a Sylow [itex]p[/itex]-subgroup of [itex]KN/N[/itex]?
Here is what I think.
Since [itex]PN/N \cong P/(P \cap N)[/itex], then [itex]PN/N[/itex] is a [itex]p[/itex]-subgroup of [itex]KN/N[/itex].
Now [itex][KN/N:PN/N]=\frac{|KN|}{|N|} \frac{|N|}{|PN|}= \frac{|KN|}{|PN|}= \frac{|K||N|}{|K \cap N|} \frac{|P \cap N|}{|P||N|} = \frac{|K||P \cap N|}{|P||K \cap N|}=[/itex] [itex][K:P]\frac{|P \cap N|}{|K \cap N|}[/itex]
Since [itex]P[/itex] is a Sylow [itex]p[/itex]-subgroup of [itex]K[/itex], then [itex]p[/itex] does not divide [itex][K:P][/itex]. Also, [itex]p[/itex] does not divide [itex]\frac{|P \cap N|}{|K \cap N|}[/itex] as [itex]\frac{|P \cap N|}{|K \cap N|} \leq 1[/itex] because [itex]P \cap N[/itex] is a subgroup of [itex]K \cap N[/itex]. Therefore [itex]p[/itex] does not divide [itex][KN/N:PN/N][/itex].
Thus [itex]PN/N[/itex] is a Sylow [itex]p[/itex]-subgroup of [itex]KN/N[/itex].
Am I right?
Thanks in advance
Let [itex]G[/itex] be a finite group. Let [itex]K[/itex] be a subgroup of [itex]G[/itex] and let [itex]N[/itex] be a normal subgroup of [itex]G[/itex]. Let [itex]P[/itex] be a Sylow [itex]p[/itex]-subgroup of [itex]K[/itex]. Is [itex]PN/N[/itex] is a Sylow [itex]p[/itex]-subgroup of [itex]KN/N[/itex]?
Here is what I think.
Since [itex]PN/N \cong P/(P \cap N)[/itex], then [itex]PN/N[/itex] is a [itex]p[/itex]-subgroup of [itex]KN/N[/itex].
Now [itex][KN/N:PN/N]=\frac{|KN|}{|N|} \frac{|N|}{|PN|}= \frac{|KN|}{|PN|}= \frac{|K||N|}{|K \cap N|} \frac{|P \cap N|}{|P||N|} = \frac{|K||P \cap N|}{|P||K \cap N|}=[/itex] [itex][K:P]\frac{|P \cap N|}{|K \cap N|}[/itex]
Since [itex]P[/itex] is a Sylow [itex]p[/itex]-subgroup of [itex]K[/itex], then [itex]p[/itex] does not divide [itex][K:P][/itex]. Also, [itex]p[/itex] does not divide [itex]\frac{|P \cap N|}{|K \cap N|}[/itex] as [itex]\frac{|P \cap N|}{|K \cap N|} \leq 1[/itex] because [itex]P \cap N[/itex] is a subgroup of [itex]K \cap N[/itex]. Therefore [itex]p[/itex] does not divide [itex][KN/N:PN/N][/itex].
Thus [itex]PN/N[/itex] is a Sylow [itex]p[/itex]-subgroup of [itex]KN/N[/itex].
Am I right?
Thanks in advance