MHB Symbolic calculation in two variables.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
The following is identically 0 which can be readily checked by a simple hand calculation.

$\binom{n+1}{k}2^{-n-1} - \binom{n}{k}2^{-n} + \binom{n}{k}*2^{-n-1} - \binom{n}{k-1}2^{-n-1}$

If you enter this in SAGE or Mathematica, using the appropriate script, and use full_simplify() and FullSimplify[] respectively, you will find that both of these softwares show you the result 0.

Can somebody tell me how does a computer handle such expressions symbolically?
 
Physics news on Phys.org
caffeinemachine said:
The following is identically 0 which can be readily checked by a simple hand calculation.

$\binom{n+1}{k}2^{-n-1} - \binom{n}{k}2^{-n} + \binom{n}{k}*2^{-n-1} - \binom{n}{k-1}2^{-n-1}$

If you enter this in SAGE or Mathematica, using the appropriate script, and use full_simplify() and FullSimplify[] respectively, you will find that both of these softwares show you the result 0.

Can somebody tell me how does a computer handle such expressions symbolically?

A computer program matches and applies a long list of pre-programmed formulas.
It can brute force the possible implication steps and see where it gets.
Its algorithms will prefer simpler results over complicated results, although it will ultimately search all of them (until it times out).

In your current problem the following rules apply:
  1. Isolate a common factor. In your case $2^{-n-1}$ and $\binom{n}{k}$ can be isolated.
  2. Evaluate sub expressions containing only numbers.
  3. Apply $\binom {n+1} k = \binom n {k-1} + \binom n k$.

When we apply them exhaustively the result zero rolls out.
Your problem is simple enough that you can still do this by hand as well, emulating what the computer will do.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top