MHB Symmetric and anti-symmetric matrices

Click For Summary
The discussion focuses on determining whether specific matrices formed from symmetric and anti-symmetric matrices are symmetric or anti-symmetric. It emphasizes using known properties of these matrices, such as the transpose of a symmetric matrix being equal to itself and the transpose of an anti-symmetric matrix being its negative. Participants suggest computing the transpose of each matrix in question and applying the relevant properties to analyze their symmetry. For example, the matrix 5AB - 5BA is shown to be symmetric through this method. Overall, the approach involves systematic computation and application of matrix properties to derive conclusions about symmetry.
Yankel
Messages
390
Reaction score
0
Hello all,

I have 3 matrices, A - symmetric, B - anti symmetric, and P - any matrix

All matrices are of order nXn and are not the 0 matrix

I need to tell if the following matrices are symmetric or anti symmetric:

1) 5AB-5BA
2) 4B^3
3) A(P^t)(A^t)
4) (A+B)^2
5) BAB

How would you approach this, are there any known relations between symmetric and anti symmetric matrices ? Thanks !
 
Physics news on Phys.org
Hi Yankel,

If you don't know the relations just do the computations, I mean, call
$A=(a_{i,j})_{i,j=1}^{n}$, $B=(b_{i,j})_{i,j=1}^{n}$ and $P=(p_{i,j})_{i,j=1}^{n}$.

Now, for example the entry $(i,j)$ of the matrix $AB$ is the product of the $i$-th row of $B$ times the $j$-th column of $B$ so it is
$\displaystyle\sum_{k=1}^{n}a_{i,k}b_{k,j}$

Now you have to check if this is equal, inverse of nothing to the $(j,i)$ entry of the same matrix, that will be
$\displaystyle\sum_{k=1}^{n}a_{j,k}b_{k,i}$

For doing this, take into account that $a_{i,j}=a_{j,i}$ and $b_{i,j}=-b_{i,j}$ for every $i\neq j$. (Sometimes in antisymmetric matrices $a_{i,i}=0$ but sometimes $a_{i,i}$ could be whatever, it depends on the definition of antisymmetry you are working with)

The same idea can be extended to all your cases.
 
Yankel said:
Hello all,

I have 3 matrices, A - symmetric, B - anti symmetric, and P - any matrix

All matrices are of order nXn and are not the 0 matrix

I need to tell if the following matrices are symmetric or anti symmetric:

1) 5AB-5BA
2) 4B^3
3) A(P^t)(A^t)
4) (A+B)^2
5) BAB

How would you approach this, are there any known relations between symmetric and anti symmetric matrices ? Thanks !
Just find the transpose of each of these matrices, using the facts that $A^{\small\mathsf{T}} = A$, $B^{\small\mathsf{T}} = -B$, and the transpose of a product is the product of the transposes in reverse order.

For example, the transpose of the matrix 1) is $$(5AB - 5BA)^{\small\mathsf{T}} = (5AB)^{\small\mathsf{T}} - (5BA)^{\small\mathsf{T}} = 5B^{\small\mathsf{T}}A^{\small\mathsf{T}} - 5A^{\small\mathsf{T}}B^{\small\mathsf{T}} = 5(-B)A - 5A(-B) = 5AB - 5BA.$$ That is the same as the original matrix, so you conclude that this matrix is symmetric.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
7K
  • · Replies 6 ·
Replies
6
Views
1K