That's true, but the original equation includes both halves.
If we go back to the simpler example I gave, ##x^2 + y^2 = 1##, if you solve for y you get ##y = \pm \sqrt{1 - x^2}##. The top half (with the pos. square root) is a function, and the bottom half (neg. sq. root) is also a function, but both together do not represent a function.
No it doesn't. As I said before, the graph of the equation at the start of this thread includes (0, 1) and (0, -1), as well as many other pairs of points that are on a vertical line.
The graph of ##x^2 + y^2 = 1## also includes (0, 1) and (0, -1) and a lot more pairs that are on vertical lines. The equations ##x^{2/3} + y^{2/3} = 1## and ##x^2 + y^2 = 1## do not represent functions.
First, I am not saying this, and second, it's not true. This equation, which is different from the one in my example, is a function. If x = 0, then y = -1, so the point (0, -1) is on the graph. The point (0, 1) is not on the graph of this parabola.