MHB Symmetry in the algebraic expressions

NotaMathPerson
Messages
82
Reaction score
0
Hello!

I read about the symmetry of the following product

$(x+a+b)(x+b+c)(x+c+a)$ my book says that a, b and c occur symmetrically. Why is that?
 
Mathematics news on Phys.org
NotaMathPerson said:
Hello!

I read about the symmetry of the following product

$(x+a+b)(x+b+c)(x+c+a)$ my book says that a, b and c occur symmetrically. Why is that?

This is also called "cyclic symmetry" and it simply means that if you switch the two variables in any of the 3 pairs in $(a,b,c)$, you still have the same expression. Try it to verify. :)
 
Actually, it's "fully symmetric" which is *different* than cyclic symmetry. To see the difference, consider:

$(a - b)(b - c)(c - a)$

If we send $a \to b \to c \to a$, we get:

$(b - c)(c - a)(a - b)$, which is the same expression (even though the factors are in a different order).

If we just switch $a$ and $b$, we get

$(b - a)(a - c)(c - b) = -(a - b)(b - c)(c - a)$, which is *not* the original expression, but its negative.

That is-if we can swap any pair and get the original expression, it is fully symmetric (permutations are generated by pair-swaps), full symmetry implies cyclic symmetry, but the reverse is not so.

(Note that $(a - b)(b - c)(c - a)$ also remains unchanged under the transformation $a \to c \to b \to a$ which gives:

$(c - a)(a - b)(b - c)$).

The transformation (substitution) $a \to b \to c \to a$ is called a 3-cycle, as it changes 3 things to something else, and repeating it three times "completes the cycle" and leaves you where you were.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top