A Symplectic Majorana Spinors in 5 Dimension

Francisca Ramirez
Messages
3
Reaction score
0
I need to know if the Symplectic Majorana spinors in 5 dimension have any advantage with respect to the Dirac spinors in 5 dimension, since they have the same number of components. For example if the Symplectic Majorana spinors have a manifested symmetry that the Dirac spinors don't have, or if it's more easy to work with the Symplectic Majorana spinors.
 
Physics news on Phys.org
No, i have not see it. I am going to check it.
Thank you!
 
Well, just a small hint: they got their name from a certain symm. property :P

Especially in supergravity, where chirality often is not that important, we like Majorana spinors. In 2,3 and 4 dimensions we can define them, but in 5 dimensions we can't. But we can go the the next best thing: symplectic Majorana. Van Proeyen explains how and why.
 
Tomas Ortin, in appendix D of "Gravity and Strings" (SECOND edition), says
There are no Majorana representations in d = 5, but only pairs of (complex) symplectic-Majorana spinors that can be combined into a single unconstrained Dirac spinor. Doing this, however, hides this structure and makes it more difficult (or impossible) to construct five-dimensional supergravities with the most general couplings. We will show how to deal with these spinors...
but in Australia, Google's preview is limited and doesn't let me see the actual argument.
 
Thank you very mach!
 
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...
Back
Top