System of cross-polynomials of variable degree

  1. Dear all,

    I am stuck with an apparently easy system of 3 simultaneous equations that has to be solved in x,y and z. The system is the following:


    The parameters (a,b,c) and the variables (x,y,z) are all in ℝ₊. The parameter α is in the open interval (0,1), so that the problem is not trivial. The question is for which α there exists a closed-form solution, and for which α there exists none, given a general vector (a,b,c).

    Proving that there always exist a unique solution is trivial as in each equation the right-hand sides are always increasing, whereas the left-hand sides are always decreasing in the corresponding variable (x for the first, y for the second, z for the third).

    Hence, my problem is in the existence of a closed-form solution.

    Many thanks!!
  2. jcsd
Know someone interested in this topic? Share this thead via email, Google+, Twitter, or Facebook

Have something to add?

Draft saved Draft deleted