MHB System of Equations: Solving Rates of Planes 600 Miles Apart

mathgeek7365
Messages
8
Reaction score
0
"Two planes leave a city for another city that us 600 miles away. One of the planes is flying 50 miles per hour faster than the other. The slower plane takes 2 hours longer to reach the city. What is the rate of each plane? Write and solve a system of equations."

My daughter is well aware that d=rt, where d represents distance, r represents rate, and t represents time. She also knows how to solve systems of equations. She is unsure on how to create the system of equations from the information given. She would like some hints as to how to start/she would like some help getting on the right track. Thanks.
 
Mathematics news on Phys.org
Hello, mathgeek7365!

"Two planes leave a city for another city that us 600 miles away.
One of the planes is flying 50 miles per hour faster than the other.
The slower plane takes 2 hours longer to reach the city. What is
the rate of each plane? Write and solve a system of equations."

My daughter is well aware that d = rt, where d represents distance,
r represents rate, and t represents time. She also knows how to solve
systems of equations. She is unsure on how to create the system of
equations from the information given.
We will use: \; d\,=\,rt \quad\Rightarrow\quad t \,=\,\frac{d}{r}

The slower plane flies at r mph.
The faster plane flies at r\!+\!5 mph.

The faster plane flies 600 miles at r\!+\!5 mph.
This takes:\:\tfrac{600}{r+5} \:=\:t hours.

The slower plane flies 600 miles at r mph.
This takes: \:\tfrac{600}{r} \:=\:t+2 hours.

There are the two equations.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
3
Views
1K
Replies
6
Views
2K
Replies
11
Views
3K
Back
Top