MHB T1.14 Integral: trigonometric u-substitution

Click For Summary
The integral I_{14} is evaluated using the substitution u = 4 + tan^3(x), leading to dx expressed in terms of du. The integral simplifies to 4 times the integral of 1/u^2, resulting in -4/u after integration. Substituting back gives the final result as I_{14} = -4/(4 + tan^3(x)) + C. The discussion highlights the effectiveness of u-substitution in solving trigonometric integrals. Suggestions include avoiding excessive abbreviations in thread titles for clarity.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{2214.t1.14}$
$\text{Evaluate the Integral:}$
\begin{align*}\displaystyle
I_{14}&=\int \frac{12\tan^2x \sec^2 x}{(4+\tan^3x)^2} \, dx \\
\textit{Use U substitution}&\\
u&=4+\tan^3x\\
\, \therefore dx& =\dfrac{1}{3\sec^2\left(x\right)\tan^2\left(x\right)}\,du\\
&=4 \int\frac{1}{u^2}\,du\\
&=4\left[-\dfrac{1}{u} \right]\\
\textit{Back substitute $u=4+\tan^3x$}\\
I_{14}&=-\frac{4}{4+\tan^3x}+C
\end{align*}

ok just seeing if this is correct
and suggestions
 
Physics news on Phys.org
Re: t1.14 Integral: trigonometic u-substitution

My suggestion, again, is not to use so many abbreviations in thread titles. (Yes)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
896
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K