MHB T20 Suppose that A is a square matrix of size n and ......

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Matrix Square
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
https://drive.google.com/file/d/1g7fjWAUEpOo2NukqFqZI4Wrujud6sjbn/view?usp=sharing

$\tiny{4.288.T20}$
Suppose that A is a square matrix of size n and $\alpha \in \CC$ is $\alpha$ scalar.
Prove that $\det{\alpha A} = \alpha^n\det{A}$.
Using $\alpha=5$
$\det{5A}=\det\left(5\left[
\begin{array}{rrr}
1&2\\3&4
\end{array} \right]\right)
=\det\left[
\begin{array}{rrr}
5&10\\15&20
\end{array} \right]=-50
$
$5^2\det{A}=5^2\det\left[
\begin{array}{rrr}
1&2\\3&4
\end{array} \right]
=\left[\begin{array}{cc} 25 & 50 \\ 75 & 100 \end{array} \right]=(25)(-50)$

Solution: $aA$ can be obtained from A by elementary row operations %of type II.
$\alpha A = E_1 \cdots E_n A$
where E, is the corresponding elementary matrix that multiplies the i-th row by the constant a.
It follows that
$\det{\alpha A}= \det{E_i}\cdots \det{E_n} \det(A)=\alpha^n\det{A} $ok I obviouly tried to follow the example above (link) but not quite sure I got the message on it...:unsure:
 
Physics news on Phys.org
The problem is asking you to prove this for any positive integer, n. You cannot just show it for n= 5. I would probably use "induction on n". When n= 1 this "n by n matrix" is just a number, a. Then $det(\alpha A)= \alpha a= \alpha^1 det(A)$.

Now suppose that for A any "k by k" matrix, it is true that $det(\alpha A)= \alpha^k det(A)$ and consider B, an arbitrary k+1 by k+ 1 matrix. Calculate $det(\alpha A)$ by "expansion on the first row. You get a sum of k+ 1 terms, each a product of a number, which will be multiplied by $\alpha$, times the determinant of a k by k matrix.
 
Last edited:
thanks that helped a lot...

I always have a :unsure::unsure:with proofs
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top