Tangent Line & Log Diff EQs: Jawairia's Qs at Yahoo Answers

Click For Summary
SUMMARY

The discussion focuses on finding the equation of the tangent line and applying logarithmic differentiation to specific functions. For the tangent line of the curve defined by \(y=(x^4 -3x^2+2x) * (x^3-2x+3)\) at \(x = 0\), the result is \(y=6x\). The logarithmic differentiation of the function \(F(x)=(2x+1)^2 * (3x^2-4)^7 *(x+7)^4\) leads to the derivative \(F'(x)=2(2x+1)(3x^2-4)^6(x+7)^3(60x^3+363x^2+123x-64)\).

PREREQUISITES
  • Understanding of calculus concepts such as tangent lines and differentiation.
  • Familiarity with logarithmic differentiation techniques.
  • Knowledge of polynomial functions and their derivatives.
  • Ability to manipulate logarithmic properties for differentiation.
NEXT STEPS
  • Study the concept of tangent lines in calculus, focusing on polynomial functions.
  • Learn about logarithmic differentiation and its applications in complex functions.
  • Explore the properties of logarithms to simplify differentiation processes.
  • Practice deriving higher-order polynomial functions and their derivatives.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on differentiation techniques, and anyone seeking to enhance their understanding of tangent lines and logarithmic differentiation.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Find eq of tangent and logarithm differentiation...?

Find an equation of the tangent line to the curve
y=(x^4 -3x^2+2x) * (x^3-2x+3) at x = 0.b:
Use the logarithmic differentiation to differentiate the function

F(x)=(2x+1)^2 * (3x^2-4)^7 *(x+7)^4

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Hello Jawairia,

a) We can save a lot of work by observing we have:

$$y=x^7+\cdots+6x$$

and so, we will find:

$$y'(0)=6$$

We can also easily see that:

$$y(0)=0$$

and so the tangent line must be:

$$y-0=6(x-0)$$

$$y=6x$$

b) We are given:

$$F(x)=(2x+1)^2(3x^2-4)^7(x+7)^4$$

If we take the natural log of both sides, we obtain:

$$\ln(F(x))=\ln\left((2x+1)^2(3x^2-4)^7(x+7)^4 \right)$$

Applying the properties of logarithms, we may write:

$$\ln(F(x))=2\ln(2x+1)+7\ln\left(3x^2-4 \right)+4\ln(x+7)$$

Differentiating with respect to $x$, we find:

$$\frac{1}{F(x)}F'(x)=\frac{4}{2x+1}+\frac{42x}{3x^2-4}+\frac{4}{x+7}$$

Hence:

$$F'(x)=F(x)\left(\frac{4}{2x+1}+\frac{42x}{3x^2-4}+\frac{4}{x+7} \right)$$

Replacing $F(x)$ with its definition, we find:

$$F'(x)=(2x+1)^2(3x^2-4)^7(x+7)^4\left(\frac{4}{2x+1}+\frac{42x}{3x^2-4}+\frac{4}{x+7} \right)$$

Distributing, we get:

$$F'(x)=4(2x+1)(3x^2-4)^7(x+7)^4+42x(2x+1)^2(3x^2-4)^6(x+7)^4+4(2x+1)^2(3x^2-4)^7(x+7)^3$$

Factoring, we find:

$$F'(x)=2(2x+1)(3x^2-4)^6(x+7)^3\left(2(3x^2-4)(x+7)+21x(2x+1)(x+7)+2(2x+1)(3x^2-4) \right)$$

Expanding and collecting like terms, we finally find:

$$F'(x)=2(2x+1)(3x^2-4)^6(x+7)^3\left(60x^3+363x^2+123x-64 \right)$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K