MHB Telling if a series is convergent or divergent?

Click For Summary
An arithmetic series is generally divergent unless it is a constant series where all terms are zero. In contrast, a geometric series converges if the common ratio's absolute value is less than one. The nth-term test for divergence indicates that if the terms do not approach zero, the series diverges. It is crucial to clarify whether the series is finite or infinite when discussing convergence. Understanding these principles helps in determining the behavior of different types of series.
m3dicat3d
Messages
19
Reaction score
0
Just had a question from a coworker regarding how to tell if a series is convergent or divergent.

Been a while since I've dealt with this so I thought I'd ask here.

I *think* I remember that arithmatic series were convergent by nature, but a geometric series could be either convergent or divergent.

And that's about all I know (assuming that is even correct).

Could anyone clear this up for me?

Thanks again :)
 
Physics news on Phys.org
Re: Telling if a series in convergent or divergent?

In general, an arithmetic series will be divergent (even the $n$th term is divergent as $n\to\infty$), while a geometric series will be convergent iff $|r|<1$.
 
Re: Telling if a series in convergent or divergent?

Infinite arithmetic series $\sum_{n=0}^\infty(an+b)$ diverges unless $a=b=0$: this follows from the $n$th term test for divergence. Infinite geometric series $\sum_{n=0}^\infty ar^n$ converges and its sum equals $a/(1-r)$ iff $|r|<1$.
 
Re: Telling if a series in convergent or divergent?

m3dicat3d said:
Just had a question from a coworker regarding how to tell if a series is convergent or divergent.

Been a while since I've dealt with this so I thought I'd ask here.

I *think* I remember that arithmatic series were convergent by nature, but a geometric series could be either convergent or divergent.

And that's about all I know (assuming that is even correct).

Could anyone clear this up for me?

Thanks again :)

It is essential to specify if we intend a series as a finite or infinite sum. If we intend it as infinite sum then, according to...

Arithmetic Series -- from Wolfram MathWorld

... an arithmetic series is the solution of the difference equation...

$\displaystyle a_{n+1}= a_{n}+ d,\ a_{0}= \alpha$ (1)

... which converges only if is d=0. In other word, an arithmetic series seems to be 'divergent by nature'...

Kind regards

$\chi$ $\sigma$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 37 ·
2
Replies
37
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K